Membrane lipid polyunsaturation mediated by FATTY ACID DESATURASE 2 (FAD2) is involved in endoplasmic reticulum stress tolerance in Arabidopsis thaliana
Summary Unsaturation of membrane glycerolipid classes at their hydrophobic fatty acid tails critically affects the physical nature of the lipid molecule. In Arabidopsis thaliana, 7 fatty acid desaturases (FADs) differently desaturate each glycerolipid class in plastids and the endoplasmic reticulum...
Gespeichert in:
Veröffentlicht in: | The Plant journal : for cell and molecular biology 2019-08, Vol.99 (3), p.478-493 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Summary
Unsaturation of membrane glycerolipid classes at their hydrophobic fatty acid tails critically affects the physical nature of the lipid molecule. In Arabidopsis thaliana, 7 fatty acid desaturases (FADs) differently desaturate each glycerolipid class in plastids and the endoplasmic reticulum (ER). Here, we showed that polyunsaturation of ER glycerolipids is required for the ER stress response. Through systematic screening of FAD mutants, we found that a mutant of FAD2 resulted in a hypersensitive response to tunicamycin, a chemical inducer of ER stress. FAD2 converts oleic acid to linoleic acid of the fatty acyl groups of ER‐synthesized phospholipids. Our functional in vivo reporter assay revealed the ER localization and distinct tissue‐specific expression patterns of FAD2. Moreover, glycerolipid profiling of both mutants and overexpressors of FAD2 under tunicamycin‐induced ER stress conditions, along with phenotypic screening of the mutants of the FAD family, suggested that the ratio of monounsaturated fatty acids to polyunsaturated fatty acids, particularly 18:1 to 18:2 species, may be an important factor in allowing the ER membrane to cope with ER stress. Therefore, our results suggest that membrane lipid polyunsaturation mediated by FAD2 is involved in ER stress tolerance in Arabidopsis.
Significance Statement
This work provides conceptual advances in understanding the circumvention mechanism of ER stress by the desaturation of ER membrane lipids. The results highlight the importance of hydrophobic tails in the lipid bilayer, and advances our understanding of membrane lipid function in the stress response in plants and beyond. |
---|---|
ISSN: | 0960-7412 1365-313X |
DOI: | 10.1111/tpj.14338 |