Oligomeric stability of Glossoscolex paulistus hemoglobin as a function of the storage time

Glossoscolex paulistus hemoglobin structure is composed of 144 globin chains and 36 polypeptide chains lacking the heme group, with a total molecular mass of 3600 kDa. The current study focuses on the oxy-HbGp oligomeric stability, as a function of the storage time, at pH 7.0, using dynamic light sc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 2019-07, Vol.133, p.30-36
Hauptverfasser: Carvalho, Francisco A.O., Caruso, Celia S., Nascimento, Evair D., Oliveira, Thiago Mielle B.F., Bachega, José F.R., Tabak, Marcel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Glossoscolex paulistus hemoglobin structure is composed of 144 globin chains and 36 polypeptide chains lacking the heme group, with a total molecular mass of 3600 kDa. The current study focuses on the oxy-HbGp oligomeric stability, as a function of the storage time, at pH 7.0, using dynamic light scattering, analytical ultracentrifugation (AUC), optical absorption and size exclusion chromatography (SEC). HbGp stored in Tris-HCl buffer, pH 7.0, at 4 °C, for two years remains in the native form, while 4–6 years HbGp stocks present typical hemichrome species absorption spectra. AUC and SEC analyses show that the contribution of HbGp-subunits, such as, dodecamer (abcd)3, tetramer abcd, trimer abc and monomer d, increases with the protein aging due to the lower stability of the HbGp with the time. The dissociation and the oxidation of the iron noted for the older protein solutions indicate that HbGp storage for periods of time longer than two years changes its ability to carry oxygen. Despite the reduction of HbGp stability and oxygen carrying capacity with aging, the protein stability is still larger as compared to mammalian hemoglobins. Thus, the extracellular hemoglobins are quite stable and resistant to the auto-oxidation process, making them of interest for biotechnological applications. •HbGp remains in the reduced and un-dissociated forms for up to two years of storage.•HbGp aging induces the formation of oxidized species and oligomeric dissociation.•HbGp thermal aggregation is promoted by samples aging.•HbGp subunits are the main species for samples with six years of storage.
ISSN:0141-8130
1879-0003
DOI:10.1016/j.ijbiomac.2019.04.072