Strategy for Structural Elucidation of Polysaccharides: Elucidation of a Maize Mucilage that Harbors Diazotrophic Bacteria

The recruitment of a bacterial consortium by the host is a strategy not limited to animals but is also used in plants. A maize aerial root mucilage has been found that harbors nitrogen fixing bacteria that are attracted to the carbohydrate rich environment. This synbiotic relationship is facilitated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2019-06, Vol.91 (11), p.7254-7265
Hauptverfasser: Amicucci, Matthew J, Galermo, Ace G, Guerrero, Andres, Treves, Guy, Nandita, Eshani, Kailemia, Muchena J, Higdon, Shawn M, Pozzo, Tania, Labavitch, John M, Bennett, Alan B, Lebrilla, Carlito B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The recruitment of a bacterial consortium by the host is a strategy not limited to animals but is also used in plants. A maize aerial root mucilage has been found that harbors nitrogen fixing bacteria that are attracted to the carbohydrate rich environment. This synbiotic relationship is facilitated by a polysaccharide, whose complicated structure has been previously unknown. In this report, we present the characterization of the maize polysaccharide by employing new analytical strategies combining chemical depolymerization, oligosaccharide sequencing, and monosaccharide and glycosidic linkage quantitation. The mucilage contains a single heterogeneous polysaccharide composed of a highly fucosylated and xylosylated galactose backbone with arabinan and mannoglucuronan branches. This unique polysaccharide structure may select for the diazotrophic community by containing monosaccharides and linkages that correspond to the glycosyl hydrolases associated with the microbial community. The elucidation of this complicated structure illustrates the power of the analytical methods, which may serve as a general platform for polysaccharide analysis in the future.
ISSN:0003-2700
1520-6882
DOI:10.1021/acs.analchem.9b00789