Ionomic profile and arsenic speciation in Semisulcospira cancellata, a freshwater shellfish from a mine-impacted river in China

Freshwater aquatic environment close to cities and industrial areas is more sensitive than marine environment. The freshwater shellfish Semisulcospira cancellate was introduced as a bioindicator to monitor the heavy metal contamination in the river through ionomic profiles and arsenic speciation. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science and pollution research international 2019-04, Vol.26 (10), p.10148-10158
Hauptverfasser: Du, Fan, Wang, Lin, Yang, Zhaoguang, Liu, Peng, Li, Deliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Freshwater aquatic environment close to cities and industrial areas is more sensitive than marine environment. The freshwater shellfish Semisulcospira cancellate was introduced as a bioindicator to monitor the heavy metal contamination in the river through ionomic profiles and arsenic speciation. The shellfish samples were collected near four cities along the Xiang River in China. The concentrations of elements including Mg, Al, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Sr, Cd, Sn, Sb, Ba, and Pb were determined using ICP-MS. Multivariate statistical analyses such as Pearson’s correlation analysis and principle component analysis (PCA) were employed to identify the possible sources of the elements in the shellfish samples. Three principle components were extracted from the ionomic matrix and were associated with natural existence, biological pathways, and mining and smelting activities, respectively. The ionomic profiles of the shellfish samples were evaluated through hierarchical cluster analysis (HCA) which was exhibited in the form of heatmap. The shellfish samples were categorized according to the sampling sites with different contamination levels. Six As species including arsenite [As(III)], arsenate [As(V)], monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), arsenobetaine (AsB), and arsenocholine (AsC) were separated and quantified using HPLC-ICP-MS. The concentrations of As(III) and As(V) were linearly increased with total As concentration increasing. However, the proportion of AsB was decreased with total As while the AsB concentration was irrelevant to total As.
ISSN:0944-1344
1614-7499
DOI:10.1007/s11356-019-04489-4