Tailoring Energy and Power Density through Controlling the Concentration of Oxygen Vacancies in V2O5/PEDOT Nanocable-Based Supercapacitors

Oxygen vacancies (Vö) play a crucial role in energy storage materials. Oxygen-vacancy-enriched vanadium pentoxide/poly­(3,4-ethylenedioxythiophene) (Vö-V2O5/PEDOT) nanocables were prepared through the one-pot oxidative polymerization of PEDOT. PEDOT is used to create tunable concentrations of Vö...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2019-05, Vol.11 (18), p.16647-16655
Hauptverfasser: Bi, Wenchao, Jahrman, Evan, Seidler, Gerald, Wang, Jichao, Gao, Guohua, Wu, Guangming, Atif, Muhammad, AlSalhi, M, Cao, Guozhong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Oxygen vacancies (Vö) play a crucial role in energy storage materials. Oxygen-vacancy-enriched vanadium pentoxide/poly­(3,4-ethylenedioxythiophene) (Vö-V2O5/PEDOT) nanocables were prepared through the one-pot oxidative polymerization of PEDOT. PEDOT is used to create tunable concentrations of Vö in the surface layer of V2O5, which has been confirmed by X-ray absorption near edge structure (XANES) analysis and X-ray photoelectron spectroscopy (XPS) measurements. Applied as electrode materials for supercapacitors, the electrochemical performance of Vö-V2O5/PEDOT is improved by the synergistic effects of Vö in V2O5 cores and PEDOT shells with rapid charge transfer and fast Na+ ion diffusion; however, it is compromised subsequently by excessive Vö in consuming more V5+ cations for Faradic reactions. Consequently, the specific capacitance and the energy density of Vö-V2O5/PEDOT nanocables are significantly enhanced when the overall concentration of Vö is 1.3%. The migration of Vö renders an increased capacitance (105% retention) after 10 000 cycles, which is verified and corroborated with density functional theory simulations and XANES analysis. This work provides an illumination for the fabrication of high-performance electrode materials in the energy storage field through Vö.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.9b03830