Response of AMP-activated protein kinase and lactate metabolism of largemouth bass (Micropterus salmoides) under acute hypoxic stress

To study adaptation of largemouth bass (Micropterus salmoides) to hypoxic stress, we investigated physiological responses and lactate metabolism of the fish under acute hypoxia. The objectives of this study were to (a) observe changes in glucose, glycogen, and lactate content; (b) detect the activit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2019-05, Vol.666, p.1071-1079
Hauptverfasser: Yang, S., Wu, H., He, K., Yan, T., Zhou, J., Zhao, L.L., Sun, J.L., Lian, W.Q., Zhang, D.M., Du, Z.J., Luo, W., He, Z., Ye, X., Li, S.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To study adaptation of largemouth bass (Micropterus salmoides) to hypoxic stress, we investigated physiological responses and lactate metabolism of the fish under acute hypoxia. The objectives of this study were to (a) observe changes in glucose, glycogen, and lactate content; (b) detect the activity of lactate dehydrogenase (LDH) in serum, brain, heart, and liver tissues; and (c) quantify the dynamic gene expression of AMP activated protein kinase alpha (AMPKα), hypoxia-inducible factor-1 alpha (HIF-1α), monocarboxylate transporter 1 (MCT1), monocarboxylate transporter 4 (MCT4), and lactate dehydrogenase-a (LDHa) following exposure to hypoxia. The fish were subjected to two hypoxia stresses (dissolved oxygen [DO] 1.20 ± 0.2 mg/L and 3.50 ± 0.3 mg/L, respectively) for 24 h. Our results showed that hypoxic stress significantly increased the decomposition of liver glycogen and significantly increased the concentration of blood glucose; however, the muscle glycogen content was not significantly decreased, which indicates that liver glycogen was the main energy source under acute hypoxia. Moreover, hypoxia led to accumulation of a large amount of lactic acid in tissues, possibly due to the activity of lactic acid dehydrogenase, but this process was delayed in the heart and brain relative to the liver. Additionally, hypoxia induced the expression of AMPKα, HIF-1α, MCT1, MCT4, and LDHa, suggesting that glycometabolism had switched from aerobic to anaerobic. Our results contribute to a better understanding of the molecular mechanisms of the response to hypoxia in largemouth bass. [Display omitted] •Liver glycogen increased in largemouth bass at initial hypoxia, but muscle glycogen was no significant difference.•Plasma glucose and lactic acid contents exhibited a significant increase after hypoxia.•Significant changes in LDH activities were observed in liver and brain.•High expression of MCT1 was observated in the only heart under hypoxia stress.•Lactate might be conversed into glycogen in heart and brain under hypoxia stress.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2019.02.236