Prevention of α-crystallin glycation and aggregation using l-lysine results in the inhibition of in vitro catalase heat-induced-aggregation and suppression of cataract formation in the diabetic rat

The principle role of α-crystallin is chaperoning activity that protect s other proteins against different stresses. High glucose concentration induces the osmotic stress and results in biomacromolecules glycation, which is subsequently cause their conformational and functional changes. Here, the ro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 2019-07, Vol.132, p.1200-1207
Hauptverfasser: Bahmani, Fereshteh, Bathaie, S. Zahra, Aldavood, S. Javid, Ghahghaei, Arezou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The principle role of α-crystallin is chaperoning activity that protect s other proteins against different stresses. High glucose concentration induces the osmotic stress and results in biomacromolecules glycation, which is subsequently cause their conformational and functional changes. Here, the roles of l-lysine (Lys) on the prevention of α-crystallin glycation in both in vitro and in vivo conditions are investigated. The catalase (CAT) activity was considered as a marker of α-crystallin functionality in both conditions. Streptozotocin-induced diabetic rats were treated with 0.1% of the Lys in drinking water. The purified α-crystallin was also incubated with glucose, in the presence or absence of the Lys and its structure-function was compared. The results showed that the visual cataract score was significantly lower in the diabetic rats treated with Lys. After Lys treatment, CAT, superoxide dismutase, aldose reductase and other biochemical parameters in the lens and serum of the diabetic rats returned to the normal value. Formation of the advanced glycation endproducts (AGEs), protein cross-linking, and the hydrophobicity of α-crystallin were changed due to glycation, but they were reversed by Lys treatment. The glycated α-crystallin lost its chaperone activity against heat denatured-CAT, but in the presence of Lys, it preserved its activity and prevented CAT aggregation. In conclusion, Lys treatment significantly inhibited the progression of diabetic cataract in rats. These effects were due to the Lys antiglycating and antioxidant effects, in addition to its protective effect against α-crystallin chaperoning activity.
ISSN:0141-8130
1879-0003
DOI:10.1016/j.ijbiomac.2019.04.037