Nano-amino acid cellulose derivatives: Eco-synthesis, characterization, and antimicrobial properties

Nowadays the using of eco-systems to synthesize new materials is the promising issue. In this work, new eco-synthesis method was developed to prepare antimicrobial cellulosic-amino acid base ligand and complexes with copper. The complex was characterized via different instrumental analysis (Fourier...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 2019-07, Vol.132, p.963-969
Hauptverfasser: Hasanin, Mohamed, El-Henawy, Ahmed, Eisa, Wael H., El-Saied, Housni, Sameeh, Manal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nowadays the using of eco-systems to synthesize new materials is the promising issue. In this work, new eco-synthesis method was developed to prepare antimicrobial cellulosic-amino acid base ligand and complexes with copper. The complex was characterized via different instrumental analysis (Fourier transform infrared spectroscopy (FTIR), UV–vis, differential scanning calorimetry (DSC), dynamic light scattering (DLS), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX)) as well as two antimicrobial screening tools (minimal inhibition concentration (MIC) and time required for killing). The UV–vis spectroscopic data indicates the metal to-ligand charge transfer transitions which is consistent with square planar geometry. DLS and SEM approved that the complex particles are in nano-size. Prepared complex appeared highly antimicrobial activity against all tested microbial organisms which can be described as broad spectrum antimicrobial agent. Rapid killing kinetics was beneficial in helping to resolve an infection more rapidly.
ISSN:0141-8130
1879-0003
DOI:10.1016/j.ijbiomac.2019.04.024