Full-time dynamics of batch-wise enzymatic cycling system composed of two kinds of dehydrogenase mediated by NAD(P)H for mass production of chiral hydroxyl compounds

Enzymatic cycling system (coupled dehydrogenase-catalyzed biosystem being composed of two elementary enzymatic reactions mediated by NAD(P)H + NAD(P)+) is industrially attractive for reducing prochiral carbonyl compounds to the corresponding chiral hydroxyl compounds. The reaction rate equation of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of bioscience and bioengineering 2019-09, Vol.128 (3), p.337-343
1. Verfasser: Yamane, Tsuneo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Enzymatic cycling system (coupled dehydrogenase-catalyzed biosystem being composed of two elementary enzymatic reactions mediated by NAD(P)H + NAD(P)+) is industrially attractive for reducing prochiral carbonyl compounds to the corresponding chiral hydroxyl compounds. The reaction rate equation of the batch-wise biosystem was generally derived by ordered Bi Bi mechanism of two-substrate enzyme reaction on several reasonable assumptions. The rate equations of the batch-wise biosystem was generalized by transforming them into the dimensionless forms. The dimensionless forms were solved numerically. It was revealed that the batch-wise biosystem was generally made up of unique 3 phases, i.e., phases I, II and III. Phase I was very short transient so that the biosystem entered rapidly phase II. In phase II the consumption rate dynamically balanced with its formation rate so that the concentration of NAD(P)H was invariable with time (and hence NAD(P)+ concentration was, too). Phase III was substrate-exhausting phase, and the coenzyme concentration became finally only [NAD(P)+] or only [NAD(P)H] depending on the initial molar ratio of the prochiral carbonyl compound to the substrate of the coenzyme regeneration reaction ([S]0/[S′]0) > or
ISSN:1389-1723
1347-4421
DOI:10.1016/j.jbiosc.2019.03.004