Absence of Criticality in the Phase Transitions of Open Floquet Systems
We address the nature of phase transitions in periodically driven systems coupled to a bath. The latter enables a synchronized nonequilibrium Floquet steady state at finite entropy, which we analyze for rapid drives within a nonequilibrium renormalization group (RG) approach. While the infinitely ra...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2019-03, Vol.122 (11), p.110602-110602, Article 110602 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We address the nature of phase transitions in periodically driven systems coupled to a bath. The latter enables a synchronized nonequilibrium Floquet steady state at finite entropy, which we analyze for rapid drives within a nonequilibrium renormalization group (RG) approach. While the infinitely rapidly driven limit exhibits a second-order phase transition, here we reveal that fluctuations turn the transition first order when the driving frequency is finite. This can be traced back to a universal mechanism, which crucially hinges on the competition of degenerate, near critical modes associated with higher Floquet Brillouin zones. The critical exponents of the infinitely rapidly driven system-including a new, independent one-can yet be probed experimentally upon smoothly tuning towards that limit. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.122.110602 |