Tao‐Hong‐Si‐Wu decoction reduces ischemia reperfusion rat myoblast cells calcium overloading and inflammation through the Wnt/IP3R/CAMKII pathway
Limb ischemia reperfusion (LIRI) injury is associated with serious local and systemic effects. Reperfusion may augment tissue injury in excess of that produced by ischemia alone. Calcium overloading and inflammation are considered to be two of the pathological mechanisms of limb ischemia/reperfusion...
Gespeichert in:
Veröffentlicht in: | Journal of cellular biochemistry 2019-08, Vol.120 (8), p.13095-13106 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Limb ischemia reperfusion (LIRI) injury is associated with serious local and systemic effects. Reperfusion may augment tissue injury in excess of that produced by ischemia alone. Calcium overloading and inflammation are considered to be two of the pathological mechanisms of limb ischemia/reperfusion (I/R) injury. Tao‐Hong‐Si‐Wu decoction (THSWD) is a traditional Chinese herbal medicine with a powerful anti‐inflammatory properties. We studied the probable restorative effect of THSWD on limb I/R‐induced calcium overloading and inflammation in myoblast obtained from gastrocnemius muscle tissues of Sprague‐Dawley rats (Frizzled Z5,a wnt5a blocker; KN‐93, a calmodulin‐dependent protein kinase II (CamkII) blocker; XeC, a IP3R blocker as positive controls). The simulated ischemia and reperfusion(I/R) solutions were used to imitate LIRI environment. The results showed that after I/R treatment, the secretion of proinflammatory factors (TNF‐α and IL‐1β) and Wnt5a/Ca2+ signal molecules (wnt5a, camkII, and IP3R) upregulated significantly, the Ca2+ concentration enhanced too in myoblast cells. THSWD pretreatment decreased the secretion of TNF‐α and IL‐1β, Ca2+ concentration; and abated the Wnt5a/Ca2+ signal molecules of wnt5a, camkII and IP3R expression activated by I/R injury; but could not abated the Wnt11 and protein kinase C (PKC) expression significantly, the results was similar with Frizzled Z5 treatment cells. Our research illustrated that THSWD may have a mitigating effect on LIRI targeting Wnt/IP3R/CAMKII but not Wnt/IP3R/PKC signaling pathway for the first time. This study may encourage the use of THSWD in the critical clinical settings with LIRI. |
---|---|
ISSN: | 0730-2312 1097-4644 |
DOI: | 10.1002/jcb.28582 |