A Benchmark for Edge-Preserving Image Smoothing
Edge-preserving image smoothing is an important step for many low-level vision problems. Though many algorithms have been proposed, there are several difficulties hindering its further development. First, most existing algorithms cannot perform well on a wide range of image contents using a single p...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2019-07, Vol.28 (7), p.3556-3570 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3570 |
---|---|
container_issue | 7 |
container_start_page | 3556 |
container_title | IEEE transactions on image processing |
container_volume | 28 |
creator | Zhu, Feida Liang, Zhetong Jia, Xixi Zhang, Lei Yu, Yizhou |
description | Edge-preserving image smoothing is an important step for many low-level vision problems. Though many algorithms have been proposed, there are several difficulties hindering its further development. First, most existing algorithms cannot perform well on a wide range of image contents using a single parameter setting. Second, the performance evaluation of edge-preserving image smoothing remains subjective, and there is a lack of widely accepted datasets to objectively compare the different algorithms. To address these issues and further advance the state of the art, in this paper, we propose a benchmark for edge-preserving image smoothing. This benchmark includes an image dataset with ground truth image smoothing results as well as baseline algorithms that can generate competitive edge-preserving smoothing results for a wide range of image contents. The established dataset contains 500 training and testing images with a number of representative visual object categories, while the baseline methods in our benchmark are built upon representative deep convolutional network architectures, on top of which we design novel loss functions well suited for the edge-preserving image smoothing. The trained deep networks run faster than most of the state-of-the-art smoothing algorithms with leading smoothing results both qualitatively and quantitatively. The benchmark will be made publicly accessible. |
doi_str_mv | 10.1109/TIP.2019.2908778 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2204684064</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8678814</ieee_id><sourcerecordid>2237674189</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-27b6b018ccea2711629ae35fb054d4d62e0b9666aec33736918d245c4919b1e53</originalsourceid><addsrcrecordid>eNpdkEtLA0EMgAdRbK3eBUEWvHjZNpmZncexlqqFggXredlH-rLbrTNdwX_vlNYePCUhX0LyMXaL0EUE25uOJl0OaLvcgtHanLE2WokxgOTnIYdExxqlbbEr71cAKBNUl6wlwEqllGyzXj96ok2xqDL3Gc1qFw3LOcUTR57c93Izj0ZVNqfovarr3SLU1-xilq093Rxjh308D6eD13j89jIa9MdxIaTexVznKgc0RUEZ14iK24xEMsshkaUsFSfIbbggo0IILZRFU3KZFNKizZES0WGPh71bV3815HdptfQFrdfZhurGp5yDVEaCkgF9-Ieu6sZtwnWBElppicYGCg5U4WrvHc3SrVuGr39ShHQvMw0y073M9CgzjNwfFzd5ReVp4M9eAO4OwJKITm2jtDEoxS8pvnTN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2237674189</pqid></control><display><type>article</type><title>A Benchmark for Edge-Preserving Image Smoothing</title><source>IEEE Electronic Library (IEL)</source><creator>Zhu, Feida ; Liang, Zhetong ; Jia, Xixi ; Zhang, Lei ; Yu, Yizhou</creator><creatorcontrib>Zhu, Feida ; Liang, Zhetong ; Jia, Xixi ; Zhang, Lei ; Yu, Yizhou</creatorcontrib><description>Edge-preserving image smoothing is an important step for many low-level vision problems. Though many algorithms have been proposed, there are several difficulties hindering its further development. First, most existing algorithms cannot perform well on a wide range of image contents using a single parameter setting. Second, the performance evaluation of edge-preserving image smoothing remains subjective, and there is a lack of widely accepted datasets to objectively compare the different algorithms. To address these issues and further advance the state of the art, in this paper, we propose a benchmark for edge-preserving image smoothing. This benchmark includes an image dataset with ground truth image smoothing results as well as baseline algorithms that can generate competitive edge-preserving smoothing results for a wide range of image contents. The established dataset contains 500 training and testing images with a number of representative visual object categories, while the baseline methods in our benchmark are built upon representative deep convolutional network architectures, on top of which we design novel loss functions well suited for the edge-preserving image smoothing. The trained deep networks run faster than most of the state-of-the-art smoothing algorithms with leading smoothing results both qualitatively and quantitatively. The benchmark will be made publicly accessible.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2019.2908778</identifier><identifier>PMID: 30946664</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; benchmark ; Benchmark testing ; Benchmarks ; deep convolutional networks ; Edge-preserving smoothing ; Ground truth ; image dataset ; Image edge detection ; Image reconstruction ; Network architecture ; Neural networks ; Performance evaluation ; Smoothing ; Smoothing methods ; Visualization</subject><ispartof>IEEE transactions on image processing, 2019-07, Vol.28 (7), p.3556-3570</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-27b6b018ccea2711629ae35fb054d4d62e0b9666aec33736918d245c4919b1e53</citedby><cites>FETCH-LOGICAL-c347t-27b6b018ccea2711629ae35fb054d4d62e0b9666aec33736918d245c4919b1e53</cites><orcidid>0000-0002-2078-4215 ; 0000-0002-7533-1870 ; 0000-0003-4780-2900 ; 0000-0002-0470-5548</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8678814$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8678814$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30946664$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Feida</creatorcontrib><creatorcontrib>Liang, Zhetong</creatorcontrib><creatorcontrib>Jia, Xixi</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Yu, Yizhou</creatorcontrib><title>A Benchmark for Edge-Preserving Image Smoothing</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Edge-preserving image smoothing is an important step for many low-level vision problems. Though many algorithms have been proposed, there are several difficulties hindering its further development. First, most existing algorithms cannot perform well on a wide range of image contents using a single parameter setting. Second, the performance evaluation of edge-preserving image smoothing remains subjective, and there is a lack of widely accepted datasets to objectively compare the different algorithms. To address these issues and further advance the state of the art, in this paper, we propose a benchmark for edge-preserving image smoothing. This benchmark includes an image dataset with ground truth image smoothing results as well as baseline algorithms that can generate competitive edge-preserving smoothing results for a wide range of image contents. The established dataset contains 500 training and testing images with a number of representative visual object categories, while the baseline methods in our benchmark are built upon representative deep convolutional network architectures, on top of which we design novel loss functions well suited for the edge-preserving image smoothing. The trained deep networks run faster than most of the state-of-the-art smoothing algorithms with leading smoothing results both qualitatively and quantitatively. The benchmark will be made publicly accessible.</description><subject>Algorithms</subject><subject>benchmark</subject><subject>Benchmark testing</subject><subject>Benchmarks</subject><subject>deep convolutional networks</subject><subject>Edge-preserving smoothing</subject><subject>Ground truth</subject><subject>image dataset</subject><subject>Image edge detection</subject><subject>Image reconstruction</subject><subject>Network architecture</subject><subject>Neural networks</subject><subject>Performance evaluation</subject><subject>Smoothing</subject><subject>Smoothing methods</subject><subject>Visualization</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtLA0EMgAdRbK3eBUEWvHjZNpmZncexlqqFggXredlH-rLbrTNdwX_vlNYePCUhX0LyMXaL0EUE25uOJl0OaLvcgtHanLE2WokxgOTnIYdExxqlbbEr71cAKBNUl6wlwEqllGyzXj96ok2xqDL3Gc1qFw3LOcUTR57c93Izj0ZVNqfovarr3SLU1-xilq093Rxjh308D6eD13j89jIa9MdxIaTexVznKgc0RUEZ14iK24xEMsshkaUsFSfIbbggo0IILZRFU3KZFNKizZES0WGPh71bV3815HdptfQFrdfZhurGp5yDVEaCkgF9-Ieu6sZtwnWBElppicYGCg5U4WrvHc3SrVuGr39ShHQvMw0y073M9CgzjNwfFzd5ReVp4M9eAO4OwJKITm2jtDEoxS8pvnTN</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Zhu, Feida</creator><creator>Liang, Zhetong</creator><creator>Jia, Xixi</creator><creator>Zhang, Lei</creator><creator>Yu, Yizhou</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2078-4215</orcidid><orcidid>https://orcid.org/0000-0002-7533-1870</orcidid><orcidid>https://orcid.org/0000-0003-4780-2900</orcidid><orcidid>https://orcid.org/0000-0002-0470-5548</orcidid></search><sort><creationdate>20190701</creationdate><title>A Benchmark for Edge-Preserving Image Smoothing</title><author>Zhu, Feida ; Liang, Zhetong ; Jia, Xixi ; Zhang, Lei ; Yu, Yizhou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-27b6b018ccea2711629ae35fb054d4d62e0b9666aec33736918d245c4919b1e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>benchmark</topic><topic>Benchmark testing</topic><topic>Benchmarks</topic><topic>deep convolutional networks</topic><topic>Edge-preserving smoothing</topic><topic>Ground truth</topic><topic>image dataset</topic><topic>Image edge detection</topic><topic>Image reconstruction</topic><topic>Network architecture</topic><topic>Neural networks</topic><topic>Performance evaluation</topic><topic>Smoothing</topic><topic>Smoothing methods</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Feida</creatorcontrib><creatorcontrib>Liang, Zhetong</creatorcontrib><creatorcontrib>Jia, Xixi</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Yu, Yizhou</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhu, Feida</au><au>Liang, Zhetong</au><au>Jia, Xixi</au><au>Zhang, Lei</au><au>Yu, Yizhou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Benchmark for Edge-Preserving Image Smoothing</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2019-07-01</date><risdate>2019</risdate><volume>28</volume><issue>7</issue><spage>3556</spage><epage>3570</epage><pages>3556-3570</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Edge-preserving image smoothing is an important step for many low-level vision problems. Though many algorithms have been proposed, there are several difficulties hindering its further development. First, most existing algorithms cannot perform well on a wide range of image contents using a single parameter setting. Second, the performance evaluation of edge-preserving image smoothing remains subjective, and there is a lack of widely accepted datasets to objectively compare the different algorithms. To address these issues and further advance the state of the art, in this paper, we propose a benchmark for edge-preserving image smoothing. This benchmark includes an image dataset with ground truth image smoothing results as well as baseline algorithms that can generate competitive edge-preserving smoothing results for a wide range of image contents. The established dataset contains 500 training and testing images with a number of representative visual object categories, while the baseline methods in our benchmark are built upon representative deep convolutional network architectures, on top of which we design novel loss functions well suited for the edge-preserving image smoothing. The trained deep networks run faster than most of the state-of-the-art smoothing algorithms with leading smoothing results both qualitatively and quantitatively. The benchmark will be made publicly accessible.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>30946664</pmid><doi>10.1109/TIP.2019.2908778</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-2078-4215</orcidid><orcidid>https://orcid.org/0000-0002-7533-1870</orcidid><orcidid>https://orcid.org/0000-0003-4780-2900</orcidid><orcidid>https://orcid.org/0000-0002-0470-5548</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2019-07, Vol.28 (7), p.3556-3570 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_proquest_miscellaneous_2204684064 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms benchmark Benchmark testing Benchmarks deep convolutional networks Edge-preserving smoothing Ground truth image dataset Image edge detection Image reconstruction Network architecture Neural networks Performance evaluation Smoothing Smoothing methods Visualization |
title | A Benchmark for Edge-Preserving Image Smoothing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T20%3A10%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Benchmark%20for%20Edge-Preserving%20Image%20Smoothing&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Zhu,%20Feida&rft.date=2019-07-01&rft.volume=28&rft.issue=7&rft.spage=3556&rft.epage=3570&rft.pages=3556-3570&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2019.2908778&rft_dat=%3Cproquest_RIE%3E2237674189%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2237674189&rft_id=info:pmid/30946664&rft_ieee_id=8678814&rfr_iscdi=true |