A Benchmark for Edge-Preserving Image Smoothing

Edge-preserving image smoothing is an important step for many low-level vision problems. Though many algorithms have been proposed, there are several difficulties hindering its further development. First, most existing algorithms cannot perform well on a wide range of image contents using a single p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2019-07, Vol.28 (7), p.3556-3570
Hauptverfasser: Zhu, Feida, Liang, Zhetong, Jia, Xixi, Zhang, Lei, Yu, Yizhou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3570
container_issue 7
container_start_page 3556
container_title IEEE transactions on image processing
container_volume 28
creator Zhu, Feida
Liang, Zhetong
Jia, Xixi
Zhang, Lei
Yu, Yizhou
description Edge-preserving image smoothing is an important step for many low-level vision problems. Though many algorithms have been proposed, there are several difficulties hindering its further development. First, most existing algorithms cannot perform well on a wide range of image contents using a single parameter setting. Second, the performance evaluation of edge-preserving image smoothing remains subjective, and there is a lack of widely accepted datasets to objectively compare the different algorithms. To address these issues and further advance the state of the art, in this paper, we propose a benchmark for edge-preserving image smoothing. This benchmark includes an image dataset with ground truth image smoothing results as well as baseline algorithms that can generate competitive edge-preserving smoothing results for a wide range of image contents. The established dataset contains 500 training and testing images with a number of representative visual object categories, while the baseline methods in our benchmark are built upon representative deep convolutional network architectures, on top of which we design novel loss functions well suited for the edge-preserving image smoothing. The trained deep networks run faster than most of the state-of-the-art smoothing algorithms with leading smoothing results both qualitatively and quantitatively. The benchmark will be made publicly accessible.
doi_str_mv 10.1109/TIP.2019.2908778
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2204684064</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8678814</ieee_id><sourcerecordid>2237674189</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-27b6b018ccea2711629ae35fb054d4d62e0b9666aec33736918d245c4919b1e53</originalsourceid><addsrcrecordid>eNpdkEtLA0EMgAdRbK3eBUEWvHjZNpmZncexlqqFggXredlH-rLbrTNdwX_vlNYePCUhX0LyMXaL0EUE25uOJl0OaLvcgtHanLE2WokxgOTnIYdExxqlbbEr71cAKBNUl6wlwEqllGyzXj96ok2xqDL3Gc1qFw3LOcUTR57c93Izj0ZVNqfovarr3SLU1-xilq093Rxjh308D6eD13j89jIa9MdxIaTexVznKgc0RUEZ14iK24xEMsshkaUsFSfIbbggo0IILZRFU3KZFNKizZES0WGPh71bV3815HdptfQFrdfZhurGp5yDVEaCkgF9-Ieu6sZtwnWBElppicYGCg5U4WrvHc3SrVuGr39ShHQvMw0y073M9CgzjNwfFzd5ReVp4M9eAO4OwJKITm2jtDEoxS8pvnTN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2237674189</pqid></control><display><type>article</type><title>A Benchmark for Edge-Preserving Image Smoothing</title><source>IEEE Electronic Library (IEL)</source><creator>Zhu, Feida ; Liang, Zhetong ; Jia, Xixi ; Zhang, Lei ; Yu, Yizhou</creator><creatorcontrib>Zhu, Feida ; Liang, Zhetong ; Jia, Xixi ; Zhang, Lei ; Yu, Yizhou</creatorcontrib><description>Edge-preserving image smoothing is an important step for many low-level vision problems. Though many algorithms have been proposed, there are several difficulties hindering its further development. First, most existing algorithms cannot perform well on a wide range of image contents using a single parameter setting. Second, the performance evaluation of edge-preserving image smoothing remains subjective, and there is a lack of widely accepted datasets to objectively compare the different algorithms. To address these issues and further advance the state of the art, in this paper, we propose a benchmark for edge-preserving image smoothing. This benchmark includes an image dataset with ground truth image smoothing results as well as baseline algorithms that can generate competitive edge-preserving smoothing results for a wide range of image contents. The established dataset contains 500 training and testing images with a number of representative visual object categories, while the baseline methods in our benchmark are built upon representative deep convolutional network architectures, on top of which we design novel loss functions well suited for the edge-preserving image smoothing. The trained deep networks run faster than most of the state-of-the-art smoothing algorithms with leading smoothing results both qualitatively and quantitatively. The benchmark will be made publicly accessible.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2019.2908778</identifier><identifier>PMID: 30946664</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; benchmark ; Benchmark testing ; Benchmarks ; deep convolutional networks ; Edge-preserving smoothing ; Ground truth ; image dataset ; Image edge detection ; Image reconstruction ; Network architecture ; Neural networks ; Performance evaluation ; Smoothing ; Smoothing methods ; Visualization</subject><ispartof>IEEE transactions on image processing, 2019-07, Vol.28 (7), p.3556-3570</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-27b6b018ccea2711629ae35fb054d4d62e0b9666aec33736918d245c4919b1e53</citedby><cites>FETCH-LOGICAL-c347t-27b6b018ccea2711629ae35fb054d4d62e0b9666aec33736918d245c4919b1e53</cites><orcidid>0000-0002-2078-4215 ; 0000-0002-7533-1870 ; 0000-0003-4780-2900 ; 0000-0002-0470-5548</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8678814$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8678814$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30946664$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Feida</creatorcontrib><creatorcontrib>Liang, Zhetong</creatorcontrib><creatorcontrib>Jia, Xixi</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Yu, Yizhou</creatorcontrib><title>A Benchmark for Edge-Preserving Image Smoothing</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Edge-preserving image smoothing is an important step for many low-level vision problems. Though many algorithms have been proposed, there are several difficulties hindering its further development. First, most existing algorithms cannot perform well on a wide range of image contents using a single parameter setting. Second, the performance evaluation of edge-preserving image smoothing remains subjective, and there is a lack of widely accepted datasets to objectively compare the different algorithms. To address these issues and further advance the state of the art, in this paper, we propose a benchmark for edge-preserving image smoothing. This benchmark includes an image dataset with ground truth image smoothing results as well as baseline algorithms that can generate competitive edge-preserving smoothing results for a wide range of image contents. The established dataset contains 500 training and testing images with a number of representative visual object categories, while the baseline methods in our benchmark are built upon representative deep convolutional network architectures, on top of which we design novel loss functions well suited for the edge-preserving image smoothing. The trained deep networks run faster than most of the state-of-the-art smoothing algorithms with leading smoothing results both qualitatively and quantitatively. The benchmark will be made publicly accessible.</description><subject>Algorithms</subject><subject>benchmark</subject><subject>Benchmark testing</subject><subject>Benchmarks</subject><subject>deep convolutional networks</subject><subject>Edge-preserving smoothing</subject><subject>Ground truth</subject><subject>image dataset</subject><subject>Image edge detection</subject><subject>Image reconstruction</subject><subject>Network architecture</subject><subject>Neural networks</subject><subject>Performance evaluation</subject><subject>Smoothing</subject><subject>Smoothing methods</subject><subject>Visualization</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtLA0EMgAdRbK3eBUEWvHjZNpmZncexlqqFggXredlH-rLbrTNdwX_vlNYePCUhX0LyMXaL0EUE25uOJl0OaLvcgtHanLE2WokxgOTnIYdExxqlbbEr71cAKBNUl6wlwEqllGyzXj96ok2xqDL3Gc1qFw3LOcUTR57c93Izj0ZVNqfovarr3SLU1-xilq093Rxjh308D6eD13j89jIa9MdxIaTexVznKgc0RUEZ14iK24xEMsshkaUsFSfIbbggo0IILZRFU3KZFNKizZES0WGPh71bV3815HdptfQFrdfZhurGp5yDVEaCkgF9-Ieu6sZtwnWBElppicYGCg5U4WrvHc3SrVuGr39ShHQvMw0y073M9CgzjNwfFzd5ReVp4M9eAO4OwJKITm2jtDEoxS8pvnTN</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Zhu, Feida</creator><creator>Liang, Zhetong</creator><creator>Jia, Xixi</creator><creator>Zhang, Lei</creator><creator>Yu, Yizhou</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2078-4215</orcidid><orcidid>https://orcid.org/0000-0002-7533-1870</orcidid><orcidid>https://orcid.org/0000-0003-4780-2900</orcidid><orcidid>https://orcid.org/0000-0002-0470-5548</orcidid></search><sort><creationdate>20190701</creationdate><title>A Benchmark for Edge-Preserving Image Smoothing</title><author>Zhu, Feida ; Liang, Zhetong ; Jia, Xixi ; Zhang, Lei ; Yu, Yizhou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-27b6b018ccea2711629ae35fb054d4d62e0b9666aec33736918d245c4919b1e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>benchmark</topic><topic>Benchmark testing</topic><topic>Benchmarks</topic><topic>deep convolutional networks</topic><topic>Edge-preserving smoothing</topic><topic>Ground truth</topic><topic>image dataset</topic><topic>Image edge detection</topic><topic>Image reconstruction</topic><topic>Network architecture</topic><topic>Neural networks</topic><topic>Performance evaluation</topic><topic>Smoothing</topic><topic>Smoothing methods</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Feida</creatorcontrib><creatorcontrib>Liang, Zhetong</creatorcontrib><creatorcontrib>Jia, Xixi</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Yu, Yizhou</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhu, Feida</au><au>Liang, Zhetong</au><au>Jia, Xixi</au><au>Zhang, Lei</au><au>Yu, Yizhou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Benchmark for Edge-Preserving Image Smoothing</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2019-07-01</date><risdate>2019</risdate><volume>28</volume><issue>7</issue><spage>3556</spage><epage>3570</epage><pages>3556-3570</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Edge-preserving image smoothing is an important step for many low-level vision problems. Though many algorithms have been proposed, there are several difficulties hindering its further development. First, most existing algorithms cannot perform well on a wide range of image contents using a single parameter setting. Second, the performance evaluation of edge-preserving image smoothing remains subjective, and there is a lack of widely accepted datasets to objectively compare the different algorithms. To address these issues and further advance the state of the art, in this paper, we propose a benchmark for edge-preserving image smoothing. This benchmark includes an image dataset with ground truth image smoothing results as well as baseline algorithms that can generate competitive edge-preserving smoothing results for a wide range of image contents. The established dataset contains 500 training and testing images with a number of representative visual object categories, while the baseline methods in our benchmark are built upon representative deep convolutional network architectures, on top of which we design novel loss functions well suited for the edge-preserving image smoothing. The trained deep networks run faster than most of the state-of-the-art smoothing algorithms with leading smoothing results both qualitatively and quantitatively. The benchmark will be made publicly accessible.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>30946664</pmid><doi>10.1109/TIP.2019.2908778</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-2078-4215</orcidid><orcidid>https://orcid.org/0000-0002-7533-1870</orcidid><orcidid>https://orcid.org/0000-0003-4780-2900</orcidid><orcidid>https://orcid.org/0000-0002-0470-5548</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2019-07, Vol.28 (7), p.3556-3570
issn 1057-7149
1941-0042
language eng
recordid cdi_proquest_miscellaneous_2204684064
source IEEE Electronic Library (IEL)
subjects Algorithms
benchmark
Benchmark testing
Benchmarks
deep convolutional networks
Edge-preserving smoothing
Ground truth
image dataset
Image edge detection
Image reconstruction
Network architecture
Neural networks
Performance evaluation
Smoothing
Smoothing methods
Visualization
title A Benchmark for Edge-Preserving Image Smoothing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T20%3A10%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Benchmark%20for%20Edge-Preserving%20Image%20Smoothing&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Zhu,%20Feida&rft.date=2019-07-01&rft.volume=28&rft.issue=7&rft.spage=3556&rft.epage=3570&rft.pages=3556-3570&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2019.2908778&rft_dat=%3Cproquest_RIE%3E2237674189%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2237674189&rft_id=info:pmid/30946664&rft_ieee_id=8678814&rfr_iscdi=true