A Benchmark for Edge-Preserving Image Smoothing

Edge-preserving image smoothing is an important step for many low-level vision problems. Though many algorithms have been proposed, there are several difficulties hindering its further development. First, most existing algorithms cannot perform well on a wide range of image contents using a single p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2019-07, Vol.28 (7), p.3556-3570
Hauptverfasser: Zhu, Feida, Liang, Zhetong, Jia, Xixi, Zhang, Lei, Yu, Yizhou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Edge-preserving image smoothing is an important step for many low-level vision problems. Though many algorithms have been proposed, there are several difficulties hindering its further development. First, most existing algorithms cannot perform well on a wide range of image contents using a single parameter setting. Second, the performance evaluation of edge-preserving image smoothing remains subjective, and there is a lack of widely accepted datasets to objectively compare the different algorithms. To address these issues and further advance the state of the art, in this paper, we propose a benchmark for edge-preserving image smoothing. This benchmark includes an image dataset with ground truth image smoothing results as well as baseline algorithms that can generate competitive edge-preserving smoothing results for a wide range of image contents. The established dataset contains 500 training and testing images with a number of representative visual object categories, while the baseline methods in our benchmark are built upon representative deep convolutional network architectures, on top of which we design novel loss functions well suited for the edge-preserving image smoothing. The trained deep networks run faster than most of the state-of-the-art smoothing algorithms with leading smoothing results both qualitatively and quantitatively. The benchmark will be made publicly accessible.
ISSN:1057-7149
1941-0042
DOI:10.1109/TIP.2019.2908778