Dynamics of scattering in undulatory active collisions

Natural and artificial self-propelled systems must manage environmental interactions during movement. In complex environments, these interactions include active collisions, in which propulsive forces create persistent contacts with heterogeneities. Due to the driven and dissipative nature of these s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E 2019-02, Vol.99 (2-1), p.022606-022606, Article 022606
Hauptverfasser: Rieser, Jennifer M, Schiebel, Perrin E, Pazouki, Arman, Qian, Feifei, Goddard, Zachary, Wiesenfeld, Kurt, Zangwill, Andrew, Negrut, Dan, Goldman, Daniel I
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Natural and artificial self-propelled systems must manage environmental interactions during movement. In complex environments, these interactions include active collisions, in which propulsive forces create persistent contacts with heterogeneities. Due to the driven and dissipative nature of these systems, such collisions are fundamentally different from those typically studied in classical physics. Here we experimentally and numerically study the effects of active collisions on a laterally undulating sensory-deprived robophysical model, whose dynamics are relevant to self-propelled systems across length scales and environments. Interactions with a single rigid post scatter the robot, and this deflection is dominated by head-post contact. These results motivate a model which reduces the snake to a circular particle with two key features: The collision dynamics are set by internal driving subject to the geometric constraints of the post, and the particle has an effective length equal to the wavelength of the snake. Interactions with a single row of evenly spaced posts (with interpost spacing d) produce distributions reminiscent of far-field diffraction patterns: As d decreases, distinct secondary peaks emerge as large deflections become more likely. Surprisingly, we find that the presence of multiple posts does not change the nature of individual collisions; instead, multimodal scattering patterns arise from multiple posts altering the likelihood of individual collisions to occur. As d decreases, collisions near the leading edges of the posts become more probable, and we find that these interactions are associated with larger deflections. Our results, which highlight the surprising dynamics that can occur during active collisions of self-propelled systems, can inform control principles for locomotors in complex terrain and facilitate design of task-capable active matter.
ISSN:2470-0045
2470-0053
DOI:10.1103/PhysRevE.99.022606