Sustained Release SDF-1α/TGF-β1-Loaded Silk Fibroin-Porous Gelatin Scaffold Promotes Cartilage Repair

Continuous delivery of growth factors to the injury site is crucial to creating a favorable microenvironment for cartilage injury repair. In the present study, we fabricated a novel sustained-release scaffold, stromal-derived factor-1α (SDF-1α)/transforming growth factor-β1 (TGF-β1)-loaded silk fibr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2019-04, Vol.11 (16), p.14608-14618
Hauptverfasser: Chen, Yuanfeng, Wu, Tingting, Huang, Shusen, Suen, Chun-Wai Wade, Cheng, Xin, Li, Jieruo, Hou, Huige, She, Guorong, Zhang, Huantian, Wang, Huajun, Zheng, Xiaofei, Zha, Zhengang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Continuous delivery of growth factors to the injury site is crucial to creating a favorable microenvironment for cartilage injury repair. In the present study, we fabricated a novel sustained-release scaffold, stromal-derived factor-1α (SDF-1α)/transforming growth factor-β1 (TGF-β1)-loaded silk fibroin-porous gelatin scaffold (GSTS). GSTS persistently releases SDF-1α and TGF-β1, which enhance cartilage repair by facilitating cell homing and chondrogenic differentiation. Scanning electron microscopy showed that GSTS is a porous microstructure and the protein release assay demonstrated the sustainable release of SDF-1α and TGF-β1 from GSTS. Bone marrow-derived mesenchymal stem cells (MSCs) maintain high in vitro cell activity and excellent cell distribution and phenotype after seeding into GSTS. Furthermore, MSCs acquired enhanced chondrogenic differentiation capability in the TGF-β1-loaded scaffolds (GSTS or GST: loading TGF-β1 only) and the conditioned medium from SDF-1α-loaded scaffolds (GSTS or GSS: loading SDF-1α only) effectively promoted MSCs migration. GSTS was transplanted into the osteochondral defects in the knee joint of rats, and it could promote cartilage regeneration and repair the cartilage defects at 12 weeks after transplantation. Our study shows that GSTS can facilitate in vitro MSCs homing, migration, chondrogenic differentiation and SDF-1α and TGF-β1 have a synergistic effect on the promotion of in vivo cartilage forming. This SDF-1α and TGF-β1 releasing GSTS have promising therapeutic potential in cartilage repair.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.9b01532