Boosting electrocatalytic N2 reduction by MnO2 with oxygen vacancies

Here, we demonstrate the experimental verification of utilizing a MnO2 with oxygen vacancies (MnOx) nanowire array for high-performance and durable electrocatalytic reduction at neutral pH. Such MnOx nanoarray obtains a high rate of NH3 formation (1.63 × 10−10 mol cm−2 s−1) and a high Faradaic effic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical communications (Cambridge, England) England), 2019, Vol.55 (32), p.4627-4630
Hauptverfasser: Zhang, Ling, Xiao-Ying, Xie, Wang, Huanbo, Ji, Lei, Zhang, Ya, Chen, Hongyu, Li, Tingshuai, Luo, Yonglan, Cui, Ganglong, Sun, Xuping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Here, we demonstrate the experimental verification of utilizing a MnO2 with oxygen vacancies (MnOx) nanowire array for high-performance and durable electrocatalytic reduction at neutral pH. Such MnOx nanoarray obtains a high rate of NH3 formation (1.63 × 10−10 mol cm−2 s−1) and a high Faradaic efficiency of 11.40%, which are much higher than those of its pristine MnO2 counterpart (2.3 × 10−11 mol cm−2 s−1; 1.96%). Density functional theory calculations demonstrate that the enhancement of N2 adsorption on the MnOx surface is due to stronger electronic interaction between the N2 molecule and the Mn6c atoms as a result of the oxygen vacancy. This work opens up a new avenue to explore oxygen nonstoichiometry toward the rational design of N2-fixing electrocatalysts with boosted performance for applications.
ISSN:1359-7345
1364-548X
DOI:10.1039/c9cc00936a