Fault-Tolerant Logical Gates in the IBM Quantum Experience
Quantum computers will require encoding of quantum information to protect them from noise. Fault-tolerant quantum computing architectures illustrate how this might be done but have not yet shown a conclusive practical advantage. Here we demonstrate that a small but useful error detecting code improv...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2019-03, Vol.122 (8), p.080504-080504, Article 080504 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Quantum computers will require encoding of quantum information to protect them from noise. Fault-tolerant quantum computing architectures illustrate how this might be done but have not yet shown a conclusive practical advantage. Here we demonstrate that a small but useful error detecting code improves the fidelity of the fault-tolerant gates implemented in the code space as compared to the fidelity of physically equivalent gates implemented on physical qubits. By running a randomized benchmarking protocol in the logical code space of the [4,2,2] code, we observe an order of magnitude improvement in the infidelity of the gates, with the two-qubit infidelity dropping from 5.8(2)% to 0.60(3)%. Our results are consistent with fault-tolerance theory and conclusively demonstrate the benefit of carrying out computation in a code space that can detect errors. Although the fault-tolerant gates offer an impressive improvement in fidelity, the computation as a whole is not below the fault-tolerance threshold because of noise associated with state preparation and measurement on this device. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.122.080504 |