Using Electrospun AgNW/P(VDF-TrFE) Composite Nanofibers to Create Transparent and Wearable Single-Electrode Triboelectric Nanogenerators for Self-Powered Touch Panels
Self-powered sensors have attracted significant interest for individual wearable device operation. Here, transparent and wearable single-electrode triboelectric nanogenerators (SETENGs) with high power generation are created using electrospun Ag nanowires (AgNWs)/poly(vinylidenefluoride-cotrifluoro...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2019-04, Vol.11 (16), p.15088-15096 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Self-powered sensors have attracted significant interest for individual wearable device operation. Here, transparent and wearable single-electrode triboelectric nanogenerators (SETENGs) with high power generation are created using electrospun Ag nanowires (AgNWs)/poly(vinylidenefluoride-cotrifluoroethylene) [P(VDF-TrFE)] composite nanofibers (NFs). The SETENGs generate an output power density of up to 217 W/m2 with repetitive contact and separation from the surface of a latex glove. In electrospun P(VDF-TrFE) NFs, the crystalline β-phase is highly oriented by oxygen-containing functional groups on the surface of AgNWs, endowing the F-rich surface with high electron negativity and enabling efficient triboelectrification. Additionally, 80% transmittance at a light wavelength of 550 nm, mechanical stability, and durability after 10 000 cycles at 10% strain are confirmed by filling the NF pores with plasma desorption mass spectrometry. Our SETENG acts as an effective energy harvester by powering 45 light-emitting diodes and as an excellent real-time, self-powered touch panel. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.9b03338 |