Structure and Properties of a Five-Coordinate Nickel(II) Porphyrin
Axial coordination in nickel(II) porphyrins has been thoroughly investigated and is well understood. However, isolated five-coordinate nickel(II) porphyrins are still elusive after 50 years of intense research, even though they play a crucial role as intermediates in enzymes and catalysts. Herein...
Gespeichert in:
Veröffentlicht in: | Inorganic chemistry 2019-10, Vol.58 (19), p.12542-12546 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Axial coordination in nickel(II) porphyrins has been thoroughly investigated and is well understood. However, isolated five-coordinate nickel(II) porphyrins are still elusive after 50 years of intense research, even though they play a crucial role as intermediates in enzymes and catalysts. Herein we present the first fully stable, thoroughly characterized five-coordinate nickel(II) porphyrin in solution and in the solid state (crystal structure). The spectroscopic properties indicate pure high-spin behavior (S = 1). There are distinct differences in the NMR, UV–vis, and redox behavior compared to those of high-spin six-coordinate [with two axial ligands, such as NiTPPF10·(py)2] and low-spin four-coordinate (NiTPPF10) nickel(II) porphyrins. The title compound, a strapped nickel(II) porphyrin, allows a direct comparison of four-, five-, and six-coordinate nickel(II) porphyrins, depending on the environment. With this reference in hand, previous results were reevaluated, for example, the switching efficiencies and thermodynamic data of nickel(II) porphyrin-based spin switches in solution. |
---|---|
ISSN: | 0020-1669 1520-510X |
DOI: | 10.1021/acs.inorgchem.9b00348 |