ABT-263 exhibits apoptosis-inducing potential in oral cancer cells by targeting C/EBP-homologous protein

Purpose ABT-263 is a potent BH3 mimetic that possesses anticancer potential against various types of cancer. In general, this potential is due to its high binding affinity to anti-apoptotic proteins in the Bcl-2 family that disrupt sequestration of pro-apoptotic proteins. In the present study, we so...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellular oncology (Dordrecht) 2019-06, Vol.42 (3), p.357-368
Hauptverfasser: Yang, In-Hyoung, Jung, Ji-Youn, Kim, Sung-Hyun, Yoo, Eun-Seon, Cho, Nam-Pyo, Lee, Hakmo, Lee, Jeong-Yeon, Hong, Seong Doo, Shin, Ji-Ae, Cho, Sung-Dae
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose ABT-263 is a potent BH3 mimetic that possesses anticancer potential against various types of cancer. In general, this potential is due to its high binding affinity to anti-apoptotic proteins in the Bcl-2 family that disrupt sequestration of pro-apoptotic proteins. In the present study, we sought to identify an alternative regulatory mechanism responsible for ABT-263-mediated anticancer activity in human oral cancer. Methods We investigated the in vitro anti-cancer effects of ABT-263 using a trypan blue exclusion assay, Western blotting, DAPI staining, immunofluorescence staining, a live/dead assay, microarray-based expression profiling, and quantitative real-time PCR. In vivo anti-tumorigenic effects of ABT-263 were examined using a nude mouse tumor xenograft model, a TUNEL assay, and immunohistochemistry. Results We found that ABT-263 suppressed viability and induced apoptosis in human oral cancer-derived cell lines HSC-3 and HSC-4. Subsequent microarray-based gene expression profiling revealed 55 differentially expressed genes in the ABT-263-treatead group, including 12 genes associated with “endoplasmic reticulum stress and apoptosis.” Consistent with the microarray results, the mRNA expression levels of the top four genes ( CHOP , TRB3 , ASNS , and STC2) were found to be significantly increased. In addition, we found that ABT-263 considerably enhanced the expression levels of the C/EBP-homologous protein (CHOP) and its mRNA, resulting in apoptosis induction in four other human oral cancer-derived cell lines (MC-3, YD-15, HN22, and Ca9.22). Extending our in vitro findings, we found that ABT-263 reduced the growth of HSC-4 cells in vivo at a dosage of 100 mg/kg/day without any change in body weight. TUNEL-positive cells were also found to be increased in tumors of ABT-263-treated mice without any apparent histopathological changes in liver or kidney tissues. Conclusions These results provide evidence that ABT-263 may serve as an effective therapeutic agent for the treatment of human oral cancer.
ISSN:2211-3428
2211-3436
DOI:10.1007/s13402-019-00431-5