Excessive activation of NMDA receptor inhibits the protective effect of endogenous bone marrow mesenchymal stem cells on promoting alveolarization in bronchopulmonary dysplasia

We studied the role of bone marrow mesenchymal stem cells (MSCs) in our established model of bronchopulmonary dysplasia (BPD) induced by intrauterine hypoxia in the rat. First, we found that intrauterine hypoxia can reduce the number of MSCs in lungs and bone marrow of rat neonates, whereas the admi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American Journal of Physiology: Cell Physiology 2019-06, Vol.316 (6), p.C815-C827
Hauptverfasser: Yue, Yinyan, Luo, Ziqiang, Liao, Zhengchang, Zhang, Liming, Liu, Shuai, Wang, Mingjie, Zhao, Feiyan, Cao, Chuanding, Ding, Ying, Yue, Shaojie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We studied the role of bone marrow mesenchymal stem cells (MSCs) in our established model of bronchopulmonary dysplasia (BPD) induced by intrauterine hypoxia in the rat. First, we found that intrauterine hypoxia can reduce the number of MSCs in lungs and bone marrow of rat neonates, whereas the administration of granulocyte colony-stimulating factor or busulfan to either motivate or inhibit bone marrow MSCs to lungs altered lung development. Next, in vivo experiments, we confirmed that intrauterine hypoxia also impaired bone marrow MSC proliferation and decreased cell cycling activity. In vitro, by using the cultured bone marrow MSCs, the proliferation and the cell cycling activity of MSCs were also reduced when -methyl-d-aspartic acid (NMDA) was used as an NMDA receptor (NMDAR) agonist. When MK-801 or memantine as NMDAR antagonists in vitro or in vivo was used, the reduction of cell cycling activity and proliferation were partially reversed. Furthermore, we found that intrauterine hypoxia could enhance the concentration of glutamate, an amino acid that can activate NMDAR, in the bone marrow of neonates. Finally, we confirmed that the increased concentration of TNF-ɑ in the bone marrow of neonatal rats after intrauterine hypoxia induced the release of glutamate and reduced the cell cycling activity of MSCs, and the latter could be partially reversed by MK-801. In summary, intrauterine hypoxia could decrease the number of bone marrow MSCs that could affect lung development and lung function through excessive activation of NMDAR that is partially caused by TNF-ɑ.
ISSN:0363-6143
1522-1563
DOI:10.1152/ajpcell.00392.2018