The role of glycogen in development and adult fitness in Drosophila
The polysaccharide glycogen is an evolutionarily conserved storage form of glucose. However, the physiological significance of glycogen metabolism on homeostatic control throughout the animal life cycle remains incomplete. Here, we describe mutants that have defective glycogen metabolism. Null mutan...
Gespeichert in:
Veröffentlicht in: | Development (Cambridge) 2019-04, Vol.146 (8) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The polysaccharide glycogen is an evolutionarily conserved storage form of glucose. However, the physiological significance of glycogen metabolism on homeostatic control throughout the animal life cycle remains incomplete. Here, we describe
mutants that have defective glycogen metabolism. Null mutants of glycogen synthase (
) and glycogen phosphorylase (
) displayed growth defects and larval lethality, indicating that glycogen plays a crucial role in larval development. Unexpectedly, however, a certain population of larvae developed into adults with normal morphology. Semi-lethality in glycogen mutants during the larval period can be attributed to the presence of circulating sugar trehalose. Homozygous glycogen mutants produced offspring, indicating that glycogen stored in oocytes is dispensable for embryogenesis.
and
mutants showed distinct metabolic defects in the levels of circulating sugars and triglycerides in a life stage-specific manner. In adults, glycogen as an energy reserve is not crucial for physical fitness and lifespan under nourished conditions, but glycogen becomes important under energy stress conditions. This study provides a fundamental understanding of the stage-specific requirements for glycogen metabolism in the fruit fly. |
---|---|
ISSN: | 0950-1991 1477-9129 |
DOI: | 10.1242/dev.176149 |