A Photoexcitation‐Induced Twisted Intramolecular Charge Shuttle

Charge transfer and separation are important processes governing numerous chemical reactions. Fundamental understanding of these processes and the underlying mechanisms is critical for photochemistry. Herein, we report the discovery of a new charge‐transfer and separation process, namely the twisted...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2019-05, Vol.58 (21), p.7073-7077
Hauptverfasser: Chi, Weijie, Qiao, Qinglong, Lee, Richmond, Liu, Wenjuan, Teo, Yock Siong, Gu, Danning, Lang, Matthew John, Chang, Young‐Tae, Xu, Zhaochao, Liu, Xiaogang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Charge transfer and separation are important processes governing numerous chemical reactions. Fundamental understanding of these processes and the underlying mechanisms is critical for photochemistry. Herein, we report the discovery of a new charge‐transfer and separation process, namely the twisted intramolecular charge shuttle (TICS). In TICS systems, the donor and acceptor moieties dynamically switch roles in the excited state because of an approximately 90° intramolecular rotation. TICS systems thus exhibit charge shuttling. TICSs exist in several chemical families of fluorophores (such as coumarin, BODIPY, and oxygen/carbon/silicon–rhodamine), and could be utilized to construct functional fluorescent probes (i.e., viscosity‐ or biomolecule‐sensing probes). The discovery of the TICS process expands the current perspectives of charge‐transfer processes and will inspire future applications. Twisted intramolecular charge shuttle (TICS): In TICS systems, the donor and acceptor moieties dynamically switch roles in the excited state due to an approximately 90° intramolecular rotation that is induced upon photoexcitation. This results in charge shuttling. TICSs exist in several families of fluorophores and could be utilized in the construction of fluorescent probes.
ISSN:1433-7851
1521-3773
DOI:10.1002/anie.201902766