Stretchable Electroluminescent Display Enabled by Graphene-Based Hybrid Electrode
Stretchable alternating-current electroluminescent (ACEL) devices are required due to their potential in wearable, biomedical, e-skin, robotic, lighting, and display applications; however, one of the main hurdles is to achieve uniform electroluminescence with an optimal combination of transparency,...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2019-04, Vol.11 (15), p.14222-14228 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Stretchable alternating-current electroluminescent (ACEL) devices are required due to their potential in wearable, biomedical, e-skin, robotic, lighting, and display applications; however, one of the main hurdles is to achieve uniform electroluminescence with an optimal combination of transparency, conductivity, and stretchability in electrodes. We therefore propose a fabrication scheme involving strategically combining two-dimensional graphene layers with a silver nanowire (Ag NW)-embedded PEDOT:PSS film. The developed hybrid electrode overcomes the limitations of commonly known metallic NWs and ionic conductor-based electrodes for ACEL applications. Furthermore, the potential of the hybrid electrode is realized in demonstrating large-area stretchable ACEL devices composed of an 8 × 8 passive array. The prototype ACEL passive array demonstrates efficient and uniform electroluminescence under high levels of mechanical deformation such as bending, rolling, twisting, and stretching. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.8b22135 |