Sulfur: the heart of nitric oxide-dependent redox signalling
Nitric oxide (NO), more benign than its more reactive and damaging related molecules, reactive oxygen species (ROS), is perfectly suited for duties as a redox signalling molecule. A key route for NO bioactivity is through S-nitrosation, the addition of an NO moiety to a protein Cys thiol (-SH). This...
Gespeichert in:
Veröffentlicht in: | Journal of experimental botany 2019-08, Vol.70 (16), p.4279-4286 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nitric oxide (NO), more benign than its more reactive and damaging related molecules, reactive oxygen species (ROS), is perfectly suited for duties as a redox signalling molecule. A key route for NO bioactivity is through S-nitrosation, the addition of an NO moiety to a protein Cys thiol (-SH). This redox-based, post-translational modification (PTM) can modify protein function analogous to more well established PTMs such as phosphorylation, for example by modulating enzyme activity, localization, or protein–protein interactions. At the heart of the underpinning chemistry associated with this PTM is sulfur. The emerging evidence suggests that S-nitrosation is integral to a myriad of plant biological processes embedded in both development and environmental relations. However, a role for S-nitrosation is perhaps most well established in plant–pathogen interactions. |
---|---|
ISSN: | 0022-0957 1460-2431 |
DOI: | 10.1093/jxb/erz135 |