An Unexpected Ireland–Claisen Rearrangement Cascade During the Synthesis of the Tricyclic Core of Curcusone C: Mechanistic Elucidation by Trial-and-Error and Automatic Artificial Force-Induced Reaction (AFIR) Computations
In the course of a total synthesis effort directed toward the natural product curcusone C, the Stoltz group discovered an unexpected thermal rearrangement of a divinylcyclopropane to the product of a formal Cope/1,3-sigmatropic shift sequence. Since the involvement of a thermally forbidden 1,3-shift...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2019-05, Vol.141 (17), p.6995-7004 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the course of a total synthesis effort directed toward the natural product curcusone C, the Stoltz group discovered an unexpected thermal rearrangement of a divinylcyclopropane to the product of a formal Cope/1,3-sigmatropic shift sequence. Since the involvement of a thermally forbidden 1,3-shift seemed unlikely, theoretical studies involving two approaches, the “trial-and-error” testing of various conceivable mechanisms (Houk group) and an “automatic” approach using the Maeda–Morokuma AFIR method (Morokuma group) were applied to explore the mechanism. Eventually, both approaches converged on a cascade mechanism shown to have some partial literature precedent: Cope rearrangement/1,5-sigmatropic silyl shift/Claisen rearrangement/retro-Claisen rearrangement/1,5-sigmatropic silyl shift, comprising a quintet of five sequential thermally allowed pericyclic rearrangements. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/jacs.9b01146 |