Artificial intelligence in breast imaging

This article reviews current limitations and future opportunities for the application of computer-aided detection (CAD) systems and artificial intelligence in breast imaging. Traditional CAD systems in mammography screening have followed a rules-based approach, incorporating domain knowledge into ha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical radiology 2019-05, Vol.74 (5), p.357-366
Hauptverfasser: Le, E.P.V., Wang, Y., Huang, Y., Hickman, S., Gilbert, F.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article reviews current limitations and future opportunities for the application of computer-aided detection (CAD) systems and artificial intelligence in breast imaging. Traditional CAD systems in mammography screening have followed a rules-based approach, incorporating domain knowledge into hand-crafted features before using classical machine learning techniques as a classifier. The first commercial CAD system, ImageChecker M1000, relies on computer vision techniques for pattern recognition. Unfortunately, CAD systems have been shown to adversely affect some radiologists' performance and increase recall rates. The Digital Mammography DREAM Challenge was a multidisciplinary collaboration that provided 640,000 mammography images for teams to help decrease false-positive rates in breast cancer screening. Winning solutions leveraged deep learning's (DL) automatic hierarchical feature learning capabilities and used convolutional neural networks. Start-ups Therapixel and Kheiron Medical Technologies are using DL for breast cancer screening. With increasing use of digital breast tomosynthesis, specific artificial intelligence (AI)-CAD systems are emerging to include iCAD's PowerLook Tomo Detection and ScreenPoint Medical's Transpara. Other AI-CAD systems are focusing on breast diagnostic techniques such as ultrasound and magnetic resonance imaging (MRI). There is a gap in the market for contrast-enhanced spectral mammography AI-CAD tools. Clinical implementation of AI-CAD tools requires testing in scenarios mimicking real life to prove its usefulness in the clinical environment. This requires a large and representative dataset for testing and assessment of the reader's interaction with the tools. A cost-effectiveness assessment should be undertaken, with a large feasibility study carried out to ensure there are no unintended consequences. AI-CAD systems should incorporate explainable AI in accordance with the European Union General Data Protection Regulation (GDPR).
ISSN:0009-9260
1365-229X
DOI:10.1016/j.crad.2019.02.006