Machine Learning for Prediction of Posttraumatic Stress and Resilience Following Trauma: An Overview of Basic Concepts and Recent Advances

Posttraumatic stress responses are characterized by a heterogeneity in clinical appearance and etiology. This heterogeneity impacts the field's ability to characterize, predict, and remediate maladaptive responses to trauma. Machine learning (ML) approaches are increasingly utilized to overcome...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of traumatic stress 2019-04, Vol.32 (2), p.215-225
Hauptverfasser: Schultebraucks, Katharina, Galatzer‐Levy, Isaac R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Posttraumatic stress responses are characterized by a heterogeneity in clinical appearance and etiology. This heterogeneity impacts the field's ability to characterize, predict, and remediate maladaptive responses to trauma. Machine learning (ML) approaches are increasingly utilized to overcome this foundational problem in characterization, prediction, and treatment selection across branches of medicine that have struggled with similar clinical realities of heterogeneity in etiology and outcome, such as oncology. In this article, we review and evaluate ML approaches and applications utilized in the areas of posttraumatic stress, stress pathology, and resilience research, and present didactic information and examples to aid researchers interested in the relevance of ML to their own research. The examined studies exemplify the high potential of ML approaches to build accurate predictive and diagnostic models of posttraumatic stress and stress pathology risk based on diverse sources of available information. The use of ML approaches to integrate high‐dimensional data demonstrates substantial gains in risk prediction even when the sources of data are the same as those used in traditional predictive models. This area of research will greatly benefit from collaboration and data sharing among researchers of posttraumatic stress disorder, stress pathology, and resilience. Resumen Spanish s by Asociación Chilena de Estrés Traumático (ACET) Aprendizaje de Máquinas para la Predicción del Estrés Postraumático y Resiliencia después del Trauma: Una Visión General de los Conceptos Básicos y Avances Recientes APRENDIZAJE DE MAQUINAS Y ESTRÉS POSTRAUMÁTICO Las respuestas al estrés postraumático se caracterizan por una heterogeneidad en el aspecto clínico y etiología. Esta heterogeneidad afecta la capacidad del campo para caracterizar, predecir y remediar respuestas desadaptativas al trauma. Los enfoques de aprendizaje maquinas (AM) son cada vez más utilizados para superar este problema fundamental en la caracterización, predicción y selección de tratamiento a través de las ramas de la medicina que han luchado con realidades clínicas similares de heterogeneidad en la etiología y resultados, como la oncología. En este artículo, revisamos y evaluamos los enfoques y las aplicaciones de AM utilizados en las áreas de estrés postraumático, patología del estrés, e investigación en resiliencia y presenta información didáctica y ejemplos para ayudar a investigadores interesados ​​en
ISSN:0894-9867
1573-6598
DOI:10.1002/jts.22384