Nitrous oxide emissions from China's croplands based on regional and crop-specific emission factors deviate from IPCC 2006 estimates

Calculated N2O emission factors (EFs) of applied nitrogen (N) fertilizer are currently based upon a single, universal value advocated by the IPCC (Inter-governmental Panel on Climate Change) even though EFs are thought to vary with climate and soil types. Here, we compiled and analyzed 151 N2O EF va...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2019-06, Vol.669, p.547-558
Hauptverfasser: Aliyu, Garba, Luo, Jiafa, Di, Hong J., Lindsey, Stuart, Liu, Deyan, Yuan, Junji, Chen, Zengming, Lin, Yongxin, He, Tiehu, Zaman, Mohammad, Ding, Weixin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Calculated N2O emission factors (EFs) of applied nitrogen (N) fertilizer are currently based upon a single, universal value advocated by the IPCC (Inter-governmental Panel on Climate Change) even though EFs are thought to vary with climate and soil types. Here, we compiled and analyzed 151 N2O EF values from agricultural fields across China. The EF of synthetic N applied to these croplands was 0.60%, on average, but differed significantly among six climatic zones across the country, with the highest EF found in the north subtropical zone for upland fields (0.93%) and the lowest in the middle subtropical zone for paddy fields (0.20%). Precipitation and soil pH, which showed non-linear relationships with EF, are among the factors governing it, explaining 7.0% and 8.0% of the regional variation in EFs, respectively. Annual precipitation was the key factor regulating N2O emissions from synthetic N fertilizers. Among crop types, legume crops had the highest EFs, which were significantly (P 
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2019.03.142