Sparse Associative Memory

It is still unknown how associative biological memories operate. Hopfield networks are popular models of associative memory, but they suffer from spurious memories and low efficiency. Here, we present a new model of an associative memory that overcomes these deficiencies. We call this model sparse a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computation 2019-05, Vol.31 (5), p.998-1014
1. Verfasser: Hoffmann, Heiko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is still unknown how associative biological memories operate. Hopfield networks are popular models of associative memory, but they suffer from spurious memories and low efficiency. Here, we present a new model of an associative memory that overcomes these deficiencies. We call this model sparse associative memory (SAM) because it is based on sparse projections from neural patterns to pattern-specific neurons. These sparse projections have been shown to be sufficient to uniquely encode a neural pattern. Based on this principle, we investigate theoretically and in simulation our SAM model, which turns out to have high memory efficiency and a vanishingly small probability of spurious memories. This model may serve as a basic building block of brain functions involving associative memory.
ISSN:0899-7667
1530-888X
DOI:10.1162/neco_a_01181