Two-year dynamic functional network connectivity in clinically isolated syndrome

Background: The features of functional network connectivity reorganization at the earliest stages of MS have not been investigated yet. Objective: To combine static and dynamic analysis of resting state (RS) functional connectivity (FC) to identify mechanisms of clinical dysfunction and recovery occ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multiple sclerosis 2020-05, Vol.26 (6), p.645-658
Hauptverfasser: Rocca, Maria A, Hidalgo de La Cruz, Milagros, Valsasina, Paola, Mesaros, Sarlota, Martinovic, Vanja, Ivanovic, Jovana, Drulovic, Jelena, Filippi, Massimo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background: The features of functional network connectivity reorganization at the earliest stages of MS have not been investigated yet. Objective: To combine static and dynamic analysis of resting state (RS) functional connectivity (FC) to identify mechanisms of clinical dysfunction and recovery occurring in clinically isolated syndrome (CIS) patients. Methods: RS functional magnetic resonance imaging (fMRI) and clinical data were prospectively acquired from 50 CIS patients and 13 healthy controls (HC) at baseline, month 12 and month 24. Between-group differences and longitudinal evolution of network FC were analysed across 41 functionally relevant networks. Results: At follow-up, 47 patients developed MS. Disability remained stable (and relatively low). CIS and HC exhibited two recurring RS FC states (states 1 and 2, showing low and high internetwork connectivity, respectively). At baseline, patients showed reduced state 2 connectivity strength in the default-mode and cerebellar networks, and no differences in global dynamism versus HC. A selective FC reduction in networks affected by the clinical attack was also detected. At follow-up, increased state 2 connectivity strength and global connectivity dynamism was observed in patients versus HC. Conclusion: Longitudinal FC modifications occurring relatively early in the course of multiple sclerosis may represent a protective mechanism contributing to preserve clinical function over time.
ISSN:1352-4585
1477-0970
DOI:10.1177/1352458519837704