Accuracy of Transient Elastography Data Combined With APRI in Detection and Staging of Liver Disease in Pediatric Patients With Cystic Fibrosis

Liver disease develops in 15%–72% of patients with cystic fibrosis, and 5%–10% develop cirrhosis or portal hypertension, usually during childhood. Transient elastography (TE) is a noninvasive method to measure liver stiffness. We aimed to validate its accuracy in detection of liver disease and asses...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical gastroenterology and hepatology 2019-11, Vol.17 (12), p.2561-2569.e5
Hauptverfasser: Lewindon, Peter J., Puertolas-Lopez, Mora V., Ramm, Louise E., Noble, Charlton, Pereira, Tamara N., Wixey, Julie A., Hartel, Gunter F., Calvopina, Diego A., Leung, Daniel H., Ramm, Grant A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Liver disease develops in 15%–72% of patients with cystic fibrosis, and 5%–10% develop cirrhosis or portal hypertension, usually during childhood. Transient elastography (TE) is a noninvasive method to measure liver stiffness. We aimed to validate its accuracy in detection of liver disease and assessment of fibrosis in children with cystic fibrosis. We performed a cross-sectional study to evaluate the accuracy of TE in analysis of liver disease in 160 consecutive children who presented with cystic fibrosis (9.0 ± 0.4 years old, 53% male) at a tertiary referral pediatric center in Australia, from 2011 through 2016. Patients were classified as having cystic fibrosis-associated liver disease (CFLD) or cystic fibrosis without liver disease (CFnoLD) based on clinical, biochemical, and imaging features. Fibrosis severity was determined from histologic analysis of dual-pass liver biopsies from children with CFLD, as the reference standard. Data from healthy children without cystic fibrosis (n = 64, controls) were obtained from a separate study. Liver stiffness measurements (LSMs) were made by Fibroscan analysis, using the inter-quartile range/median ≤30% of 10 valid measurements. Children with macronodularity or portal hypertension with heterogeneous changes on ultrasound without available biopsy were assigned to the category of stage F3–F4 fibrosis. LSM was made reliably in 86% of children; accuracy increased with age. LSMs were significantly higher in children with CFLD (10.7 ± 2.4 kPa, n = 33) than with CFnoLD (4.6 ± 0.1 kPa, n = 105) (P < .0001) or controls (4.1 ± 0.1kPa) (P < .0001); LSMs were higher in children with CFnoLD than controls (P < .05). At a cut-off value of 5.55kPa, LSM identified children with CFLD with an area under the receiver operating characteristic (AUROC) curve of 0.82, 70% sensitivity, and 82% specificity (P < .0001). Classification and regression tree models that combined LSM and aspartate aminotransferase to platelet ratio index (APRI) identified children with CFLD with an AUROC curve of 0.89, 87% sensitivity, and 74% specificity (odds ratio, 18.6). LSMs correlated with fibrosis stage in patients with CFLD (r = 0.67, P = .0001). A cut-off value of 8.7kPa differentiated patients with stage F3–F4 fibrosis from patients with stage F1–F2 fibrosis (AUROC, 0.87; 75% sensitivity; 100% specificity, P=.0002). The combination of LSMs and APRI improved the differentiation of patients with F3–F4 fibrosis vs F1–F2 fibrosis (AUROC, 0.92; 83% sensit
ISSN:1542-3565
1542-7714
DOI:10.1016/j.cgh.2019.03.015