Determination of the Thin-Film Structure of Zwitterion-Doped Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate): A Neutron Reflectivity Study

Doping poly­(3,4-ethylenedioxythiophene):poly­(styrene sulfonate) (PEDOT:PSS) is known to improve its conductivity; however, little is known about the thin-film structure of PEDOT:PSS when doped with an asymmetrically charged dopant. In this study, PEDOT:PSS was doped with different concentrations o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2019-04, Vol.11 (14), p.13803-13811
Hauptverfasser: Pérez, Gabriel E, Bernardo, Gabriel, Gaspar, Hugo, Cooper, Joshaniel F. K, Bastianini, Francesco, Parnell, Andrew J, Dunbar, Alan D. F
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Doping poly­(3,4-ethylenedioxythiophene):poly­(styrene sulfonate) (PEDOT:PSS) is known to improve its conductivity; however, little is known about the thin-film structure of PEDOT:PSS when doped with an asymmetrically charged dopant. In this study, PEDOT:PSS was doped with different concentrations of the zwitterion 3-(N,N dimethylmyristylammonio)­propanesulfonate (DYMAP), and its effect on the bulk structure of the films was characterized by neutron reflectivity. The results show that at a low doping concentration, the film separates into a quasi-bilayer structure with lower roughness (10%), increased thickness (18%), and lower electrical conductivity compared to the undoped sample. However, when the doping concentration increases, the film forms into a homogeneous layer and experiences an enhanced conductivity by more than an order of magnitude, a 20% smoother surface, and a 60% thickness increase relative to the pristine sample. Atomic force microscopy (AFM) and profilometry measurements confirmed these findings, and the AFM height and phase images showed the gradually increasing presence of DYMAP on the film surface as a function of the concentration. Neutron reflectivity also showed that the quasi-bilayer structure of the lowest concentration-doped PEDOT:PSS is separated by a graded rather than a well-defined interface. Our findings provide an understanding of the layer structure modification for doped PEDOT:PSS films which should prove important for device applications.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.9b02700