Improving moisture stability of SrLiAl3N4:Eu2+ through phosphor-in-glass approach to realize its application in plant growing LED device
[Display omitted] Herein, we present a simple strategy to enhance the stability of water-sensitive SrLiAl3N4:Eu2+ phosphor through embedding the phosphor particles into low-melting Sn-P-F-O glass using phosphor-in-glass (PiG) approach. After being immersed in water for 96 h, the emission intensity o...
Gespeichert in:
Veröffentlicht in: | Journal of colloid and interface science 2019-06, Vol.545, p.195-199 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
Herein, we present a simple strategy to enhance the stability of water-sensitive SrLiAl3N4:Eu2+ phosphor through embedding the phosphor particles into low-melting Sn-P-F-O glass using phosphor-in-glass (PiG) approach. After being immersed in water for 96 h, the emission intensity of the SrLiAl3N4:Eu2+-PiG sample was maintained at 80% of its pristine intensity, indicating the moisture-resistance property of SrLiAl3N4:Eu2+ was significantly enhanced. Employing the narrow-band red-emitting SrLiAl3N4:Eu2+-PiG sample and a blue COB (chip-on-board), a plant growing LED device was fabricated. The emission spectrum of the device matches well with the absorption of Chlorophyl (a and b) in plants, indicating the as-prepared SrLiAl3N4:Eu2+-PiG are suitable to be applied in plant lighting field. We believe that this simple method reported in this communication can be easily expanded to other water-sensitive luminescence materials. |
---|---|
ISSN: | 0021-9797 1095-7103 |
DOI: | 10.1016/j.jcis.2019.03.032 |