Model based optimization of process parameters to produce large homogeneous areas of laser-induced periodic surface structures

A model is presented, which allows to predict the (in)homogeneity of large areas covered with Laser-induced Periodic Surface Structures (LIPSS), based on the laser processing parameters (peak laser fluence and geometrical pulse-to-pulse overlap) and experimentally determined material properties. As...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2019-03, Vol.27 (5), p.6012-6029
Hauptverfasser: Mezera, M, Römer, G R B E
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A model is presented, which allows to predict the (in)homogeneity of large areas covered with Laser-induced Periodic Surface Structures (LIPSS), based on the laser processing parameters (peak laser fluence and geometrical pulse-to-pulse overlap) and experimentally determined material properties. As such, the model allows to establish optimal processing conditions, given the material properties of the substrate to be processed. The model is experimentally validated over a large range of geometrical pulse-to-pulse overlap values and fluence levels on silicon using a picosecond laser source.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.27.006012