Model based optimization of process parameters to produce large homogeneous areas of laser-induced periodic surface structures
A model is presented, which allows to predict the (in)homogeneity of large areas covered with Laser-induced Periodic Surface Structures (LIPSS), based on the laser processing parameters (peak laser fluence and geometrical pulse-to-pulse overlap) and experimentally determined material properties. As...
Gespeichert in:
Veröffentlicht in: | Optics express 2019-03, Vol.27 (5), p.6012-6029 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A model is presented, which allows to predict the (in)homogeneity of large areas covered with Laser-induced Periodic Surface Structures (LIPSS), based on the laser processing parameters (peak laser fluence and geometrical pulse-to-pulse overlap) and experimentally determined material properties. As such, the model allows to establish optimal processing conditions, given the material properties of the substrate to be processed. The model is experimentally validated over a large range of geometrical pulse-to-pulse overlap values and fluence levels on silicon using a picosecond laser source. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.27.006012 |