Infinite deflectometry enabling 2π-steradian measurement range
We present a novel deflectometry implementation termed Infinite Deflectometry. The technique provides a full aperture surface reconstruction sag map of freeform surfaces, including previously challenging to measure optics such as highly convex surfaces. The method relies on the creation of a virtual...
Gespeichert in:
Veröffentlicht in: | Optics express 2019-03, Vol.27 (5), p.7602-7615 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a novel deflectometry implementation termed Infinite Deflectometry. The technique provides a full aperture surface reconstruction sag map of freeform surfaces, including previously challenging to measure optics such as highly convex surfaces. The method relies on the creation of a virtual source enclosure around the tested optic, which creates a virtual 2π-steradian measurement range. To demonstrate the performance, a fast f/1.26 convex optical surface was measured with a commercial interferometer and with the Infinite Deflectometry system. After removing Zernike terms 1 through 37, the metrology tests resulted in absolute RMS surface values of 18.48 nm and 16.26 nm, respectively. Additionally, a freeform Alvarez lens was measured with the new technique and measured 22.34 μm of surface sag RMS after piston, tip/tilt, and defocus had been removed. The result deviated by 488 nm RMS from a profilometer measurement while standard interferometry failed to measure the Alvarez lens due to its non-nulled wavefront dynamic range limitation. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.27.007602 |