Integrated olfaction, gustation and toxicity detection by a versatile bioengineered cell-based biomimetic sensor
The biological olfactory and gustation system can discriminate thousands of odor and taste substances with high sensitivity and specificity, specific receptor proteins play an important role in this process. This study used the human neuroblastoma SH-SY5Y cell line endogenously expressing the human...
Gespeichert in:
Veröffentlicht in: | Bioelectrochemistry (Amsterdam, Netherlands) Netherlands), 2019-08, Vol.128, p.1-8 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The biological olfactory and gustation system can discriminate thousands of odor and taste substances with high sensitivity and specificity, specific receptor proteins play an important role in this process. This study used the human neuroblastoma SH-SY5Y cell line endogenously expressing the human bitter receptor, T2R16. Meanwhile, an olfactory receptor, ODR-10, was transfected on the plasma membrane of SH-SY5Y cells. T2R16 could specifically respond to bitter compounds with the structure of β-glucopyranosides by activation of G protein coupled receptors (GPCRs) causing cell morphologic changes, which could be monitored using a cell-impedance sensor. ODR-10 could specifically respond to diacetyl by changing the extracellular potential of the cells, the resopnse was recorded by a microelectrode array (MEA). The cell index (CI) value and firing rates were extracted from the signals as the biosensor response characteristics. The results with the sensors indicated a dose-dependent response within a defined concentration range. Moreover, this cell-impedance biosensor enabled quick toxicity detection of salicin when the concentration was ≥6 mM. In conclusion, the biomimetic sensors integrated olfaction, gustation and toxicity detection using the same cell, and has showed great potential for use in both basic research and practical applications.
•The human neuroblastoma cell line SH-SY5Y was first used as sensing element to identify odor, bitter and toxic compounds.•The biosensor based on different kinds of receptors on the same cell was proposed to detect two compounds.•The biosensor possessed high sensitivity for the odor of diacetyl and the bitter compounds of salicin. |
---|---|
ISSN: | 1567-5394 1878-562X |
DOI: | 10.1016/j.bioelechem.2019.02.009 |