Regulation of MFGE8 by the intergenic coronary artery disease locus on 15q26.1

A recently identified locus for coronary artery disease (CAD) tagged by rs8042271 is in a region of tight linkage disequilibrium (LD) between 2 genes (MFGE8, ABHD2) previously linked to atherosclerosis. Here we have explored the regulatory framework of this region to identify its functional relation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atherosclerosis 2019-05, Vol.284, p.11-17
Hauptverfasser: Soubeyrand, Sébastien, Nikpay, Majid, Turner, Adam, Dang, Ann-Thu, Herfkens, Mikayla, Lau, Paulina, McPherson, Ruth
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A recently identified locus for coronary artery disease (CAD) tagged by rs8042271 is in a region of tight linkage disequilibrium (LD) between 2 genes (MFGE8, ABHD2) previously linked to atherosclerosis. Here we have explored the regulatory framework of this region to identify its functional relationship to CAD. The CAD Associated Region between MFGE8 and ABHD2 (CARMA) was investigated by bioinformatic approaches and transcriptional reporter assays to prioritize target genes and identify putative causal variants. Findings were integrated with publicly available gene expression datasets. MFGE8 silencing was performed in cell models relevant to CAD. The regulatory potential of CARMA is disseminated sparsely over the entire region. CARMA contains multiple eQTL that regulate MFGE8 in coronary artery and coronary artery smooth muscle cell (CoSMC). SNPs that predict the expression of MFGE8 in artery are concordantly associated with higher risk of CAD (pval = 0.0014). Targeting CARMA by CRISPR/Cas9 in a cellular model increased MFGE8 expression. MFGE8 silencing was found to reduce CoSMC and monocyte (THP-1) but not endothelial cell proliferation. These findings support a mechanistic link between a GWAS identified CAD risk locus and atherosclerosis. The intergenic locus CARMA regulates MFGE8 in a haplotype dependent manner. Individuals genetically susceptible to increased MFGE8 expression exhibit greater CAD risk. Suppressing MFGE8 expression reduced SMC and THP-1 proliferation. These data support an atherogenic contribution of CARMA/MFGE8 that may be linked to cell proliferation and/or improved survival of CAD relevant cell types. [Display omitted] •A chromosome region associated with heart disease influences expression of neighboring genes.•The region is located in a gene desert and consists of multiple variants in tight linkage.•MFGE8 is identified as a likely intermediate bridging the variants to heart disease.
ISSN:0021-9150
1879-1484
DOI:10.1016/j.atherosclerosis.2019.02.012