A formulation of Trichoderma and Gliocladium to reduce damping-off caused by Rhizoctonia solani and saprophytic growth of the pathogen in soilless mix
Commercially manufactured cellulose granules (Biodac) were mixed with a sticker and fermentor-produced biomass of isolates of Trichoderma spp. and Gliocladium virens to produce a formulation in which chlamydospores in the biomass were "activated" with dilute acid. Activation resulted in th...
Gespeichert in:
Veröffentlicht in: | Plant disease 1998-05, Vol.82 (5), p.501-506 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Commercially manufactured cellulose granules (Biodac) were mixed with a sticker and fermentor-produced biomass of isolates of Trichoderma spp. and Gliocladium virens to produce a formulation in which chlamydospores in the biomass were "activated" with dilute acid. Activation resulted in the formation of young, actively growing hyphae of the biocontrol fungi within a 2- to 3-day period under no special aseptic conditions. Activated Biodac with biomass of isolates Gl-3, Gl-21, and Gl-32 of G. virens and isolate TRI-4 of T. hamatum applied to soilless mix at a rate of 1.5% (wt/wt) reduced damping-off of eggplant caused by Rhizoctonia solani (R-23) and resulted in stands comparable to that (88%) in noninfested soilless mix. Saprophytic growth of the pathogen was also reduced. The application of either of two activated Biodac formulations to provide the same amount (1.5% with 9.4 mg of biomass per g of Biodac or 0.2% with 75.0 mg of biomass per g of Biodac) reduced preemergence damping-off as well as saprophytic growth of R-23. Also, there was about a 10(3)-fold population increase of Gl-3 and TRI-4 in the soilless mix at the time of plant harvest compared with that provided to the soilless mix at the time of formulation addition. Activated Biodac of Gl-3 also reduced the spread of R-23 in soilless mix when the pathogen was applied at specific foci rather than evenly distributed. The inhibition of pathogen spread significantly reduced the postemergence damping-off of cucumber, eggplant, and pepper seedlings |
---|---|
ISSN: | 0191-2917 1943-7692 |
DOI: | 10.1094/PDIS.1998.82.5.501 |