Sorption of pentachlorophenol and phenanthrene by humic acid-coated hematite nanoparticles
Hematite nanoparticles (NPs) exist naturally and ubiquitously in soil, and they are always associated with soil organic matter by forming organic-inorganic complexes. In this work, hematite NPs coated with peat humic acid (HApeat) and soil humic acid (HAsoil) were chosen as sorbents for hydrophobic...
Gespeichert in:
Veröffentlicht in: | Environmental pollution (1987) 2019-05, Vol.248, p.929-937 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hematite nanoparticles (NPs) exist naturally and ubiquitously in soil, and they are always associated with soil organic matter by forming organic-inorganic complexes. In this work, hematite NPs coated with peat humic acid (HApeat) and soil humic acid (HAsoil) were chosen as sorbents for hydrophobic organic contaminants (HOCs) to simulate the sorption processes in soil. Ionizable pentachlorophenol (PCP) and non-ionizable phenanthrene (PHE) were selected as representative HOCs. Compared with sorption isotherms of uncoated hematite NPs, the coating of HA onto the surface of hematite NPs substantially increased its sorption affinity for PCP and PHE by about 1-2 orders of magnitude, and the increasing degree was positively correlated to the HA content. These phenomena emphasized the dominant role of HA in the sorption process. The reduced polarity and the introduction of functional groups contributed to the enhanced sorption of HOCs on HA-coated hematite NPs. Furthermore, HApeat-hematite NPs showed higher sorption affinity for both PCP and PHE than HAsoil-hematite NPs, which was mainly due to the lower polarity and higher hydrophobicity of HApeat-hematite NPs. The sorption of PCP and PHE on HA-coated hematite NPs was inhibited obviously with increasing pH values and the pH effect on PCP sorption was more significant than that of PHE, due to the deprotonation of functional groups within adsorbed HA, the loose structure of adsorbed HA and the dissociation of PCP. Our findings elucidated the mechanisms involved in HOCs sorption processes by HA-hematite NPs and provided a theoretical basis for environmental remediation with natural NPs (e.g., hematite NPs).
[Display omitted]
•HA-hematite NPs showed the higher sorption to PCP and PHE than pristine hematite NPs.•HA-hematite NPs had a much higher sorption affinity for PHE than PCP.•HApeat-hematite NPs had a higher sorption affinity for HOCs than HAsoil-hematite NPs.•Increasing pH obviously decreased the sorption of HOCs, especially PCP.
The coated HA enhanced the sorption of PCP and PHE on hematite NPs and the sorption was inhibited with increasing pH. |
---|---|
ISSN: | 0269-7491 1873-6424 |
DOI: | 10.1016/j.envpol.2019.02.088 |