Strontium in the environment: Review about reactions of plants towards stable and radioactive strontium isotopes

Radiostrontium is released to the environment from routine and accidental discharge and acts on living organisms either from external sources or after absorption. When incorporated by plants, it enters the food chain and causes primary threat to human health and the environment. Understanding the me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2019-02, Vol.653, p.1458-1512
Hauptverfasser: Burger, Anna, Lichtscheidl, Irene
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Radiostrontium is released to the environment from routine and accidental discharge and acts on living organisms either from external sources or after absorption. When incorporated by plants, it enters the food chain and causes primary threat to human health and the environment. Understanding the mechanisms of plants for strontium uptake and retention is therefore essential for decision making concerning agriculture: are uptake rates low enough so that plants can serve as food? Or is radiostrontium accumulated so that plants should not be eaten but could be probably used for extracting strontium from water and soil in hot spots of pollution? The review presents a summary of studies about the origin of stable and radioactive strontium in the environment and effects coming from both internal and external exposure of plants. Mobility and availability of strontium to plant roots in soil are controlled by external factors such as chemical composition of the soil and pH, temperature and agricultural soil cultivation as well as soil biological networks built by microbial communities. Plant surfaces may receive input of strontium from deposition induced by atmospheric pollution or by acquisition from water through the whole immersed surface. Cells have entry mechanisms for strontium such as plasma membrane transporters for calcium and potassium. Part of absorbed strontium can be lost via processes discussed in this review. We give examples on strontium transfer factors for 149 plants to estimate plant absorption capacity for strontium from soil, water and air. Uptake efficiency of terrestrial and aquatic plants is deciding about their remediation potential to either remove radiostrontium by accumulation and rhizofiltration or to retain it in roots or aerial parts. Data of strontium content in soils after fallout and edible plants from long-term monitoring support the evaluation of the potential hazards posed by strontium input to the food chain. [Display omitted] •Radiostrontium is taken up by plants from water, soil and air.•Level of plant-available strontium depends on abiotic and biotic factors.•Transfer factors of strontium into plants are summarized from existing literature.•Strontium is mobile within plants and their cells and causes harmful effects.•Plants have potential for remediation of soil and water containing strontium.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2018.10.312