Isolation and characterization of resveratrol oligomers from the stem bark of Hopea ponga (Dennst.) Mabb. And their antidiabetic effect by modulation of digestive enzymes, protein glycation and glucose uptake in L6 myocytes
Hopea ponga (Dennst.) Mabb. Is used in traditional herbal formulations for diabetes complications. The aim of this study is to evaluate the antidiabetic effect of extracts and compounds from H. ponga. Silica gel column chromatography was performed to identify various chemical components of the plant...
Gespeichert in:
Veröffentlicht in: | Journal of ethnopharmacology 2019-05, Vol.236, p.196-204 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hopea ponga (Dennst.) Mabb. Is used in traditional herbal formulations for diabetes complications. The aim of this study is to evaluate the antidiabetic effect of extracts and compounds from H. ponga.
Silica gel column chromatography was performed to identify various chemical components of the plant extract. Different extracts of H. ponga and isolated compounds were screened for their antidiabetic effect by modulation of digestive enzymes and protein glycation. The effect of glucose uptake by the compounds and the pathways through which the compounds mediate the glucose uptake potential were confirmed by fluorescent microscopy, flow cytometry and western blot analysis.
Acetone and ethanol extracts of the stem bark of Hopea ponga (Dennst.) Mabb. Afforded six resveratrol oligomers namely, E-resveratrol (1), (−)-ε-viniferin (2), (−)-α-viniferin (3), trihydroxyphenanthrene glucoside (THPG) (4), vaticaphenol A (5), (−)-hopeaphenol (6), along with four phytosterols. The structures were determined on the basis of spectroscopic analyses including nuclear magnetic resonance (NMR) spectroscopy and high resolution mass spectrometry (HRMS) data. Compounds 1–5 and 7–10 were tested for their α-glucosidase, α-amylase and glycation inhibitiory activities. All the resveratrol oligomers (1–5) showed prominent α-glucosidase inhibition with IC50 values, 12.56 ± 1.00, 23.98 ± 1.11, 7.17 ± 1.10, 31.74 ± 0.42 and 16.95 ± 0.39 μM, respectively. Molecular docking studies also supported the observed α-glucosidase inhibition. Compound 3 displayed IC50 values of 4.85 ± 0.06 and 27.10 ± 0.04 μM in α-amylase and glycation inhibitory assays activity. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay revealed that the compounds 3 and 4 were found to be less toxic at a concentration of 100 μM ( |
---|---|
ISSN: | 0378-8741 1872-7573 |
DOI: | 10.1016/j.jep.2019.01.046 |