Molecular mechanisms influencing efficiency of RNA interference in insects

RNA interference (RNAi) is an endogenous, sequence‐specific gene‐silencing mechanism elicited by small RNA molecules. RNAi is a powerful reverse genetic tool, and is currently being utilized for managing insects and viruses. Widespread implementation of RNAi‐based pest management strategies is curre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pest management science 2019-01, Vol.75 (1), p.18-28
Hauptverfasser: Cooper, Anastasia MW, Silver, Kristopher, Zhang, Jianzhen, Park, Yoonseong, Zhu, Kun Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:RNA interference (RNAi) is an endogenous, sequence‐specific gene‐silencing mechanism elicited by small RNA molecules. RNAi is a powerful reverse genetic tool, and is currently being utilized for managing insects and viruses. Widespread implementation of RNAi‐based pest management strategies is currently hindered by inefficient and highly variable results when different insect species, strains, developmental stages, tissues, and genes are targeted. Mechanistic studies have shown that double‐stranded ribonucleases (dsRNases), endosomal entrapment, deficient function of the core machinery, and inadequate immune stimulation contribute to limited RNAi efficiency. However, a comprehensive understanding of the molecular mechanisms limiting RNAi efficiency remains elusive. Recent advances in dsRNA stability in physiological tissues, dsRNA internalization into cells, the composition and function of the core RNAi machinery, as well as small‐interfering RNA/double‐stranded RNA amplification and spreading mechanisms are reviewed to establish a global understanding of the obstacles impeding wider understanding of RNAi mechanisms in insects. © 2018 Society of Chemical Industry This review explores our current knowledge of molecular mechanisms influencing RNA interference (RNAi) efficiency in insects, and identifies critical gaps that must be filled to improve the efficiency of insect RNAi.
ISSN:1526-498X
1526-4998
DOI:10.1002/ps.5126