A Multistage Halogen Bond Catalyzed Strain-Release Glycosylation Unravels New Hedgehog Signaling Inhibitors

Halogen bonding (XB) has recently emerged as a promising noncovalent activation mode that can be employed in catalysis. However, methodologies utilizing XB remain rare, and the hydrogen-bonding (HB) catalysis congeners are more widespread in comparison. Herein, we demonstrate a remarkable case where...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2019-04, Vol.141 (13), p.5381-5391
Hauptverfasser: Xu, Chunfa, Loh, Charles C. J
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Halogen bonding (XB) has recently emerged as a promising noncovalent activation mode that can be employed in catalysis. However, methodologies utilizing XB remain rare, and the hydrogen-bonding (HB) catalysis congeners are more widespread in comparison. Herein, we demonstrate a remarkable case whereby employment of XB catalysis in strain-release glycosylation generates O,N-glycosides in excellent anomeric selectivity exceeding HB activation. Deeper investigation unraveled XB catalyst dependencies on multiple stages of the mechanism and a hitherto unknown XB-glycosyl acceptor activation. We present a proof of concept to interrogate sp3-rich glycosidic chemical space for novel biological activity, by integrating XB-catalyzed construction of a glycosidic compound collection, and evaluating these analogues via cell-based phenotypic screens. We show that XB-catalyzed strain-release glycosylation defines a new class of glycosides that inhibit the hedgehog signaling pathway through a nonsmoothened mode of action, opening new opportunities to combat acquired cancer resistance.
ISSN:0002-7863
1520-5126
DOI:10.1021/jacs.9b00040