Hierarchically Porous Carbon Plates Derived from Wood as Bifunctional ORR/OER Electrodes

Porous carbon electrodes have emerged as important cathode materials for metal–air battery systems. However, most approaches for fabricating porous carbon electrodes from biomass are highly energy inefficient as they require the breaking down of the biomass and its subsequent reconstitution into pow...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2019-04, Vol.31 (16), p.e1900341-n/a
Hauptverfasser: Peng, Xinwen, Zhang, Lei, Chen, Zhongxin, Zhong, Linxin, Zhao, Dengke, Chi, Xiao, Zhao, Xiaoxu, Li, Ligui, Lu, Xihong, Leng, Kai, Liu, Cuibo, Liu, Wei, Tang, Wei, Loh, Kian Ping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Porous carbon electrodes have emerged as important cathode materials for metal–air battery systems. However, most approaches for fabricating porous carbon electrodes from biomass are highly energy inefficient as they require the breaking down of the biomass and its subsequent reconstitution into powder‐like carbon. Here, enzymes are explored to effectively hydrolyze the partial cellulose in bulk raw wood to form a large number of nanopores, which helps to maximally expose the inner parts of the raw wood to sufficiently dope nitrogen onto the carbon skeletons during the subsequent pyrolysis process. The resulting carbons exhibit excellent catalytic activity with respect to the oxygen reduction and oxygen evolution reactions. As‐fabricated cellulose‐digested, carbonized wood plates are mechanically strong, have high conductivity, and contain a crosslinked network and natural ion‐transport channels and can be employed directly as metal‐free electrodes without carbon paper, polymer binders, or carbon black. When used as metal‐free cathodes in zinc–air batteries, they result in a specific capacity of 801 mA h g−1 and an energy density of 955 W h kg−1 with the long‐term stability of the batteries being as high as 110 h. This work paves the way for the ready conversion of abundant biomass into high‐value engineering products for energy‐related applications. The use of enzymes allows precise fabrication of wood‐based architectures, generating a large number of nanopores by selective hydrolysis of cellulose or hemicellulose, while retaining the mechanically strong, crosslinked structure intact. Such hierarchically porous, N‐doped wood plates exhibit a superb oxygen reduction reaction and oxygen evolution reaction activity in alkaline electrolyte for self‐supporting electrodes in high‐performance Zn–air batteries.
ISSN:0935-9648
1521-4095
DOI:10.1002/adma.201900341