Learning Raw Image Reconstruction-Aware Deep Image Compressors
Deep learning-based image compressors are actively being explored in an effort to supersede conventional image compression algorithms, such as JPEG. Conventional and deep learning-based compression algorithms focus on minimizing image fidelity errors in the nonlinear standard RGB (sRGB) color space....
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 2020-04, Vol.42 (4), p.1013-1019 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Deep learning-based image compressors are actively being explored in an effort to supersede conventional image compression algorithms, such as JPEG. Conventional and deep learning-based compression algorithms focus on minimizing image fidelity errors in the nonlinear standard RGB (sRGB) color space. However, for many computer vision tasks, the sensor's linear raw-RGB image is desirable. Recent work has shown that the original raw-RGB image can be reconstructed using only small amounts of metadata embedded inside the JPEG image [1]. However, [1] relied on the conventional JPEG encoding that is unaware of the raw-RGB reconstruction task. In this paper, we examine the ability of deep image compressors to be "aware" of the additional objective of raw reconstruction. Towards this goal, we describe a general framework that enables deep networks targeting image compression to jointly consider both image fidelity errors and raw reconstruction errors. We describe this approach in two scenarios: (1) the network is trained from scratch using our proposed joint loss, and (2) a network originally trained only for sRGB fidelity loss is later fine-tuned to incorporate our raw reconstruction loss. When compared to sRGB fidelity-only compression, our combined loss leads to appreciable improvements in PSNR of the raw reconstruction with only minor impact on sRGB fidelity as measured by MS-SSIM. |
---|---|
ISSN: | 0162-8828 1939-3539 2160-9292 |
DOI: | 10.1109/TPAMI.2019.2903062 |