Convergence of Approximation Methods to Compute Eigenelements of Linear Operations

The object of this paper is a theoretical study of the convergence of approximation methods (Galerkin and finite difference methods) to compute eigenelements of a closed linear operator T in a Banach space. The stability and strong stability of the approximation method are defined, and they reduce t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on numerical analysis 1973-10, Vol.10 (5), p.939-948
1. Verfasser: Chatelin, Francoise
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The object of this paper is a theoretical study of the convergence of approximation methods (Galerkin and finite difference methods) to compute eigenelements of a closed linear operator T in a Banach space. The stability and strong stability of the approximation method are defined, and they reduce to very simple conditions when T is self-adjoint, either compact, or bounded from below with compact resolvent.
ISSN:0036-1429
1095-7170
DOI:10.1137/0710080