Convergence of Approximation Methods to Compute Eigenelements of Linear Operations
The object of this paper is a theoretical study of the convergence of approximation methods (Galerkin and finite difference methods) to compute eigenelements of a closed linear operator T in a Banach space. The stability and strong stability of the approximation method are defined, and they reduce t...
Gespeichert in:
Veröffentlicht in: | SIAM journal on numerical analysis 1973-10, Vol.10 (5), p.939-948 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The object of this paper is a theoretical study of the convergence of approximation methods (Galerkin and finite difference methods) to compute eigenelements of a closed linear operator T in a Banach space. The stability and strong stability of the approximation method are defined, and they reduce to very simple conditions when T is self-adjoint, either compact, or bounded from below with compact resolvent. |
---|---|
ISSN: | 0036-1429 1095-7170 |
DOI: | 10.1137/0710080 |