Quantifying the Bonding Strength of Gold‐Chalcogen Bonds in Block Copolymer Systems

Gold‐chalcogen interactions are ubiquitous in gold biological and medicinal systems. Understanding the nature of these interactions can provide the basis for regulating their structures and functionalities, and a reasonable way to interpret the differences in various properties. However, the relativ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry, an Asian journal an Asian journal, 2019-05, Vol.14 (9), p.1481-1486
Hauptverfasser: Xiang, Wentian, Li, Zhandong, Xu, Cong‐Qiao, Li, Jun, Zhang, Wenke, Xu, Huaping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Gold‐chalcogen interactions are ubiquitous in gold biological and medicinal systems. Understanding the nature of these interactions can provide the basis for regulating their structures and functionalities, and a reasonable way to interpret the differences in various properties. However, the relative strength of gold‐chalcogen bonds remains controversial, and the conclusions of many related works are inconsistent. Thus, in this work, we successfully quantified the relative strength of Au‐X (X=S, Se, and Te from chalcogenide‐containing A‐B‐A type block copolymers) interactions at the single‐molecule level through single‐molecule force spectroscopy (SMFS) from a kinetic point of view and quantum chemical studies from a thermodynamic point of view. Both sets of results suggested that the strength of the Au‐X bonds decreases as Au‐Te>Au‐Se>Au‐S. Our findings unveiled the relative strength and nature of gold‐chalcogen interactions, which may help expand their application in electronics, catalysis, medicine and many other fields. May the Force be with you: Single‐molecule force spectroscopy experiments using chalcogenide‐containing block copolymer as a probe to monitor gold‐chalcogen interactions are reported.
ISSN:1861-4728
1861-471X
DOI:10.1002/asia.201900332