Inhibition of TNF-α-induced neuronal apoptosis by antidepressants acting through the lysophosphatidic acid receptor LPA1

Tumor necrosis factor-α (TNF-α), a pro-inflammatory cytokine considered to be implicated in the pathogenesis of major depressive disorder, is a critical regulator of neuronal cell fate. In the present study we found that TNF-α-induced apoptosis of HT22 hippocampal cells, a neuroblast-like cell line,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Apoptosis (London) 2019-06, Vol.24 (5-6), p.478-498
Hauptverfasser: Olianas, Maria C., Dedoni, Simona, Onali, Pierluigi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tumor necrosis factor-α (TNF-α), a pro-inflammatory cytokine considered to be implicated in the pathogenesis of major depressive disorder, is a critical regulator of neuronal cell fate. In the present study we found that TNF-α-induced apoptosis of HT22 hippocampal cells, a neuroblast-like cell line, was markedly attenuated by the antidepressants mianserin, mirtazapine and amitriptyline. The anti-apoptotic effect of the antidepressants was blocked by either pharmacological inhibition or gene silencing of the lysophosphatidic acid receptor LPA 1 . Mianserin failed to affect TNF-α-induced caspase 8 activation, but inhibited the loss of mitochondrial membrane potential, the release of cytochrome c from mitochondria, procaspase 9 cleavage and downstream activation of caspase 3 in response to the cytokine. By acting through LPA 1 , mianserin also attenuated the enhanced pro-apoptotic response induced by the combination of TNF-α with other pro-inflammatory cytokines. TNF-α appeared to counterbalance its own pro-apoptotic response by activating NF-kB, ERK1/2 and JNK. Antidepressants had no significant effects on NF-kB activation, but potentiated the TAK-1-dependent phosphorylation of ERK1/2 and JNK elicited by the cytokine. This synergistic interaction was associated with enhanced JNK-mediated phosphorylation of Bcl-2 at Ser70 and increased ERK1/2-dependent mitochondrial accumulation of Mcl-1, two anti-apoptotic proteins that promote mitochondrial outer membrane stability. These results indicate that certain antidepressants, by activating LPA 1 signalling, protect HT22 hippocampal cells from TNF-α-induced apoptosis through a mechanism involving, at least in part, the potentiation of the pro-survival pathways activated by the cytokine.
ISSN:1360-8185
1573-675X
DOI:10.1007/s10495-019-01530-2