Impact of GPR1 signaling on maternal high-fat feeding and placenta metabolism in mice

Chemerin and G protein-coupled receptor 1 (GPR1) are increased in serum and placenta in mice during pregnancy. Interestingly, we observed increased serum chemerin levels and decreased GPR1 expression in placenta of high-fat-diet-fed mice compared with chow-fed mice at gestational . GPR1 protein and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physiology: endocrinology and metabolism 2019-06, Vol.316 (6), p.E987-E997
Hauptverfasser: Huang, Binbin, Huang, Chen, Zhao, Huashan, Zhu, Wen, Wang, Baobei, Wang, Hefei, Chen, Jie, Xiao, Tianxia, Niu, Jianmin, Zhang, Jian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chemerin and G protein-coupled receptor 1 (GPR1) are increased in serum and placenta in mice during pregnancy. Interestingly, we observed increased serum chemerin levels and decreased GPR1 expression in placenta of high-fat-diet-fed mice compared with chow-fed mice at gestational . GPR1 protein and gene levels were significantly decreased in gestational diabetes mellitus (GDM) patient placentas. Therefore, we hypothesized that chemerin/GPR1 signaling might participate in the pathogenic mechanism of GDM. We investigated the role of GPR1 in carbohydrate homeostasis during pregnancy using pregnant mice transfected with small interfering RNA for GPR1 or a negative control. GPR1 knockdown exacerbated glucose intolerance, disrupted lipid metabolism, and decreased β-cell proliferation and insulin levels. Glucose transport protein-3 and fatty acid binding protein-4 were downregulated with reducing GPR1 in vivo and in vitro via phosphorylated AKT pathway. Taken together, our findings first demonstrate the expression of GPR1, the characterization of its direct biological effects in humans and mice, as well as the molecular mechanism that indicates the role of GPR1 signaling in maternal metabolism during pregnancy, suggesting a novel feedback mechanism to regulate glucose balance during pregnancy, and GPR1 could be a potential target for the detection and therapy of GDM.
ISSN:0193-1849
1522-1555
DOI:10.1152/ajpendo.00437.2018